RESUMO
Reaching high densities is a key step toward cold-collision experiments with polyatomic molecules. We use a cryofuge to load up to 2×10^{7} CH_{3}F molecules into a boxlike electric trap, achieving densities up to 10^{7}/cm^{3} at temperatures around 350 mK where the elastic dipolar cross section exceeds 7×10^{-12} cm^{2}. We measure inelastic rate constants below 4×10^{-8} cm^{3}/s and control these by tuning a homogeneous electric field that covers a large fraction of the trap volume. Comparison to ab initio calculations gives excellent agreement with dipolar relaxation. Our techniques and findings are generic and immediately relevant for other cold-molecule collision experiments.
RESUMO
The ß decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{ß} window, only three negative parity states are populated directly in the ß decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden ß decays, essential for the understanding of the nucleosynthesis of heavy nuclei in the rapid neutron capture process. Furthermore, the observation of the parity changing 0^{+}â0^{-}ß decay where the daughter state is core excited is unique, and can provide information on mesonic corrections of effective operators.