Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Environ Manage ; 253: 109685, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654928

RESUMO

The efficacy of a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system equipped with thin film forward osmosis membrane for wastewater treatment was evaluated at laboratory scale. The novel OMBR-MF hybrid system involved baffles, that separate oxic and anoxic zones in the aerobic reactor for simultaneous nitrification and denitrification (SND), and a bioreactor comprised of thin film composite-forward osmosis (TFC-FO) and polyether sulfone-microfiltration (PES-MF) membranes. The evaluation was conducted under four different oxic-anoxic cycle patterns. Changes in flux, salinity build-up, and microbial activity (e.g., extracellular polymeric substances (EPS) were assessed. Over the course of a 34 d test, the OMBR-MF hybrid system achieved high removal of total organic carbon (TOC) (86-92%), total nitrogen (TN) (63-76%), and PO4-P (57-63%). The oxic-anoxic cycle time of 0.5-1.5 h was identified to be the best operating condition. Incorporation of MF membrane effectively alleviated salinity build-up in the reactor, allowing stable system operation.


Assuntos
Águas Residuárias , Purificação da Água , Reatores Biológicos , Desnitrificação , Membranas Artificiais , Nitrificação , Nitrogênio , Osmose
2.
J Environ Manage ; 248: 109240, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31310933

RESUMO

We systematically investigated the transport mechanisms of organic micropollutants (OMPs) in a fertilizer-drawn forward osmosis (FDFO) membrane process. Four representative OMPs, i.e., atenolol, atrazine, primidone, and caffeine, were chosen for their different molecular weights and structural characteristics. All the FDFO experiments were conducted with the membrane active layer on the feed solution (FS) side using three different fertilizer draw solutions (DS): potassium chloride (KCl), monoammonium phosphate (MAP), and diammonium phosphate (DAP) due to their different properties (i.e., osmotic pressure, diffusivity, viscosity and solution pH). Using KCl as the DS resulted in both the highest water flux and the highest reverse solute flux (RSF), while MAP and DAP resulted in similar water fluxes with varying RSF. The pH of the FS increased with DAP as the DS due to the reverse diffusion of NH4+ ions from the DS toward the FS, while for MAP and DAP DS, the pH of the FS was not impacted. The OMPs transport behavior (OMPs flux) was evaluated and compared with a simulated OMPs flux obtained via the pore-hindrance transport model to identify the effects of the OMPs structural properties. When MAP was used as DS, the OMPs flux was dominantly influenced by the physicochemical properties (i.e., hydrophobicity and surface charge). Those OMPs with positive charge and more hydrophobic, exhibited higher forward OMP fluxes. With DAP as the DS, the more hydrated FO membrane (caused by increased pH) as well as the enhanced RSF hindered OMPs transport through the FO membrane. With KCl as DS, the structural properties of the OMPs were dominant factors in the OMPs flux, however the higher RSF of the KCl draw solute may likely hamper the OMPs transport through the membrane especially those with higher MW (e.g., atenolol). The pore-hindrance model can be instrumental in understanding the effects of the hydrodynamic properties and the surface properties on the OMPs transport behaviors.


Assuntos
Fertilizantes , Purificação da Água , Membranas Artificiais , Osmose , Soluções
3.
J Environ Manage ; 226: 217-225, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30119046

RESUMO

Solutions to mitigate the reverse diffusion of solutes are critical to the successful commercialisation of the fertiliser drawn forward osmosis process. In this study, we proposed to combine a high performance fertiliser (i.e., ammonium sulfate or SOA) with surfactants as additives as an approach to reduce the reverse diffusion of ammonium ions. Results showed that combining SOA with both anionic and non-ionic surfactants can help in reducing the reverse salt diffusion by up to 67%. We hypothesised that, hydrophobic interactions between the surfactant tails and the membrane surface likely constricted membrane pores resulting in increased rejection of ions with large hydrated radii such as SO42-. By electroneutrality, the rejection of the counter ions (i.e., NH4+) also therefore subsequently improved. Anionic surfactant was found to further decrease the reverse salt diffusion due to electrostatic repulsions between the surfactant negatively-charged heads and SO42-. However, when the feed solution contains cations with small hydrated radii (e.g., Na+); it was found that NH4+ ions can be substituted in the DS to maintain its electroneutrality and thus the diffusion of NH4+ to the feed solution was increased.


Assuntos
Fertilizantes , Purificação da Água , Membranas Artificiais , Osmose , Tensoativos
4.
J Environ Manage ; 187: 137-145, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889657

RESUMO

The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH2PO4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased.


Assuntos
Agricultura/métodos , Fertilizantes , Osmose , Purificação da Água/métodos , Sulfato de Amônio/química , Conservação dos Recursos Naturais , Hidroponia , Membranas Artificiais , Metano/metabolismo , Fosfatos/química , Compostos de Potássio/química , Reciclagem , Soluções/química , Águas Residuárias/química , Purificação da Água/instrumentação
5.
J Environ Sci (China) ; 52: 250-258, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28254045

RESUMO

Interest in the development of inorganic polymerized coagulants is growing; however, there are only limited studies on the synthesis of polytitanium coagulants, which are expected to exhibit improved coagulation efficiency with better floc properties. This study presents the synthesis of polytitanium sulfate (PTS) for potential application in water purification, followed by characterization of PTS flocs and titanium species detection. Stable PTS solutions were successfully synthesized and standard jar tests were conducted to evaluate their coagulation efficiency. Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) speciation analysis revealed that a variety of mononuclear and polynuclear complexes were formed in PTS solution, indicating the polymeric nature of the synthesized coagulant. Floc characteristics were studied through on-line monitoring of floc size using a laser diffraction particle size analyzer. Results showed that PTS had a comparable or in some cases even higher organic matter and particulate removal efficiency than Ti(SO4)2. The effluent pH after PTS coagulation significantly improved toward desirable values closer to neutral pH. Properties of flocs formed by PTS were significantly improved in terms of floc size, growth rate and structure. This study showed that PTS could be an efficient and promising coagulant for water purification, with the additional benefit that its coagulated sludge can be used to recover valuable TiO2 nanoparticles for various commercial applications.


Assuntos
Floculação , Sulfatos/química , Titânio/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Nanopartículas
6.
Bioresour Technol ; 397: 130462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369083

RESUMO

The integration of powdered activated carbon and biofilm carriers in a membrane bioreactor (MBR) presents a promising approach to address the challenge of long hydraulic retention time (HRT) for nitrification of hydrolysed urine. This study investigated the effect of the incorporation in the MBR on microbial dynamics, focusing on dominant nitrifying bacteria. The results showed that significant shifts in microbial compositions were observed with the feed transition to full-strength urine and across different sludge growth forms. Remarkably, the nitrite-oxidizing bacteria Nitrospira were highly enriched in the suspended sludge. Simultaneously, ammonia-oxidizing bacteria, Nitrosococcaceae thrived in the attached biomass, showing a significant seven-fold increase in relative abundance compared to its suspended counterpart. Consequently, the incorporated MBR displayed 36% higher nitrification rate and 40% HRT reduction compared to the conventional MBR. This study provides valuable insights on the potential development of household or building scale on-site nutrient recovery from urine to fertiliser.


Assuntos
Microbiota , Nitrificação , Esgotos/microbiologia , Carvão Vegetal/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Biofilmes , Amônia/metabolismo
7.
Environ Sci Technol ; 46(8): 4567-75, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22404621

RESUMO

In fertilizer-drawn forward osmosis (FDFO) desalination, the final nutrient concentration (nitrogen, phosphorus, potassium (NPK)) in the product water is essential for direct fertigation and to avoid over fertilization. Our study with 11 selected fertilizers indicate that blending of two or more single fertilizers as draw solution (DS) can achieve significantly lower nutrient concentration in the FDFO product water rather than using single fertilizer alone. For example, blending KCl and NH(4)H(2)PO(4) as DS can result in 0.61/1.35/1.70 g/L of N/P/K, which is comparatively lower than using them individually as DS. The nutrient composition and concentration in the final FDFO product water can also be adjusted by selecting low nutrient fertilizers containing complementary nutrients and in different ratios to produce prescription mixtures. However, blending fertilizers generally resulted in slightly reduced bulk osmotic pressure and water flux in comparison to the sum of the osmotic pressures and water fluxes of the two individual DSs as used alone. The performance ratio or PR (ratio of actual water flux to theoretical water flux) of blended fertilizer DS was observed to be between the PR of the two fertilizer solutions tested individually. In some cases, such as urea, blending also resulted in significant reduction in N nutrient loss by reverse diffusion in presence of other fertilizer species.


Assuntos
Fertilizantes/análise , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Purificação da Água/métodos , Osmose , Salinidade
8.
Chemosphere ; 287(Pt 2): 132169, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34500334

RESUMO

Due to the shortage of freshwater around the world, seawater is becoming an important water source. However, seawater contains a high concentration of bromide that can form harmful disinfection by-products during water disinfection. Therefore, the current seawater reverse osmosis (SWRO) has to adopt two-pass reverse osmosis (RO) configuration for effective bromide removal, increasing the overall desalination cost. In this study, a bromide selective composite electrode was developed for membrane capacitive deionisation (MCDI). The composite electrode was developed by coating a mixture of bromide selective resin and anion exchange polymer on the surface of the commercial activated carbon electrode, and its performance was compared to that of conventional carbon electrode. The results demonstrated that the composite electrode has ten times better bromide selectivity than the conventional carbon electrode. The study shows the potential application of MCDI for the selective removal of target ions from water sources and the potential for resource recovery through basic modification of commercial electrode.


Assuntos
Brometos , Purificação da Água , Carvão Vegetal , Eletrodos , Membranas Artificiais , Água do Mar , Águas Residuárias
9.
Chemosphere ; 286(Pt 2): 131729, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34388871

RESUMO

In this study, a 1000 L/d capacity one-off on-site wastewater treatment system was operated for over a year as a pilot alternative to the conventional on-site treatment as currently used in urban Bhutan. An up-flow anaerobic sludge blanket (UASB) was used for blackwater treatment (to replace "septic tank followed by an anaerobic biofilter (ABF) (to replace soak pits) for the treatment of a mixture of greywater and UASB effluent. Shredded waste plastic bottles were used as the novel biofilter media in the ABF. During a yearlong operation, the pilot system produced a final treated effluent from ABF with average BOD5 28 mg/L, COD 38 mg/L, TSS 85 mg/L and 5 log units of Escherichia coli. These effluents met three out of four of the national effluent discharge limits of Bhutan, but unsuccessful to meet the Escherichia coli standard over a yearlong operation. Further, process optimisation may enable more significant Escherichia coli removal. An economic analysis indicates that the total unit cost (capital and operating expenditures) of this alternative wastewater treatment system for more than 50 users range between USD 0.27-0.37/person/month comparable to USD 0.29-0.42/person/month for the current predominant on-site system, i.e., "septic tanks". This pilot study, therefore, indicates that this wastewater treatment system using shredded waste plastic biofilter media has high potential to replace the current conventional treatment, i.e., "septic tanks", which are often overloaded with greywater and discharging effluents which does not meet the national standards.


Assuntos
Águas Residuárias , Purificação da Água , Anaerobiose , Butão , Reatores Biológicos , Humanos , Projetos Piloto , Plásticos , Esgotos , Eliminação de Resíduos Líquidos
10.
Chemosphere ; 300: 134489, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35430202

RESUMO

In this study, the impact of urine diversion on the treatment capacity, treatment process, and capital costs of a decentralised wastewater treatment plant (WWTP) was simulated using BioWin. The data for simulation including for economic analysis were obtained from a real decentralised WWTP at Sydney. Simulation was conducted for two alternative process design scenarios of a WWTP: membrane bioreactor (MBR) without denitrification and anaerobic MBR in place of aerobic MBR and compared to existing process design. The simulation shows that with about 75% urine diversion (through source separation), the treatment capacity of the existing WWTP can be doubled although above 40% urine diversion, the impact appears less rapid. When the urine diversion exceeds 75%, it was found that the anoxic tank for biological denitrification becomes redundant and the current wastewater treatment process could be replaced with a simpler and much less aeration intensive membrane bioreactor (MBR) producing similar effluent quality with a 24% reduction in capital expenditure (footprint) cost. Anaerobic MBR can be a potential alternative to aerobic MBR although pre-treatment becomes essential before reverse osmosis treatment for water reuse applications. Sensitivity analysis has revealed that by operating the bioreactor at higher mixed liquor suspended solids concentrations (9 g/L instead of 5 g/L) could help increase the WWTP treatment capacity by about 3.5 times at 75% urine diversion. Hence, urine diversion (until nitrogen-limiting conditions occur above 75% urine diversion) can increase the treatment capacity of an existing WWTP and reduce the capital expenses due to reduced plant footprint.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Reatores Biológicos , Gastos de Capital , Membranas Artificiais , Esgotos , Águas Residuárias
11.
Chemosphere ; 280: 130870, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162101

RESUMO

In this study, granular activated carbon (GAC) was examined for the removal of five of the most commonly detected pharmaceuticals (naproxen, carbamazepine, acetaminophen, ibuprofen and metronidazole) from a nitrified urine to make the urine-derived fertiliser nutrient safe for food crops. Batch experiments were conducted to investigate the adsorption kinetics that described the removal of micropollutants (equal concentrations of 0.2 mM) from the synthetic nitrified urine at different GAC dosages (10-3000 mg/L). Artificial neural network modelling was also used to predict and simulate the removal of pharmaceuticals from nitrified urine. Langmuir and Freundlich isotherm models described the equilibrium data, with the Langmuir model providing slightly higher correlations. At the highest dose of 3000 mg/L GAC, all the pharmaceuticals showed a removal rates of over 90% after 1 h of adsorption time and 99% removal rates after 6 h of adsorption time. This study concludes that GAC is able to remove the targeted xenobiotics without affecting the concentration of N and P in the urine, suggesting that nitrified urine could be safely used as a nutrient product in future.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Cinética , Poluentes Químicos da Água/análise
12.
Water Res ; 207: 117810, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741901

RESUMO

Urine with its abundant macronutrients (N-P-K) is an ideal resource for the production of fertiliser. However, the odor and pathogens in the raw urine must be removed to meet the public acceptance of urine collection systems and to enable its safe reuse as a fertiliser. In this work, real urine was collected and treated through a pilot-scale gravity-driven membrane bioreactor (GDMBR) to remove the malodorous organics and to nitrify almost 50% of the ammonia into nitrate. The stablised urine was subsequently distilled via low-cost heat localized solar evaporation (HLSE) to produce a non-odorous solid fertiliser. The developed HLSE with a small footprint can attract bulk solution into a vertical insulated space and quickly heat it up to 68 °C within 1 h. The HLSE process had vapour flux at 1.3 kg m-2 h-1 as well as high solar to vapour conversion efficiency at 87%. Based on the EDX mapping and XRD analysis, the generated crystals are mainly NaNO3, NH4Cl, NaCl, NH4H2PO4 and K2HPO4, which are ideal nutrients for vegetation. In this study, the produced urine-derived fertilisers have a better performance on the growth of the leafy basil than the all-purpose commercial fertilisers. Generally, the GDMBR-HLSE is a promising cost-effective and green technology for nutrients recovery from urine.


Assuntos
Fertilizantes , Temperatura Alta , Reatores Biológicos , Fertilizantes/análise , Nitratos , Urina/química
13.
Nanomaterials (Basel) ; 11(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34835633

RESUMO

Graphene oxide (GO) nanosheets were utilized as a selective layer on a highly porous polyvinyl alcohol (PVA) nanofiber support via a pressure-assisted self-assembly technique to synthesize composite nanofiltration membranes. The GO layer was rendered stable by cross-linking the nanosheets (GO-to-GO) and by linking them onto the support surface (GO-to-PVA) using glutaraldehyde (GA). The amounts of GO and GA deposited on the PVA substrate were varied to determine the optimum nanofiltration membrane both in terms of water flux and salt rejection performances. The successful GA cross-linking of GO interlayers and GO-PVA via acetalization was confirmed by FTIR and XPS analyses, which corroborated with other characterization results from contact angle and zeta potential measurements. Morphologies of the most effective membrane (CGOPVA-50) featured a defect-free GA cross-linked GO layer with a thickness of ~67 nm. The best solute rejections of the CGOPVA-50 membrane were 91.01% for Na2SO4 (20 mM), 98.12% for Eosin Y (10 mg/L), 76.92% for Methylene blue (10 mg/L), and 49.62% for NaCl (20 mM). These findings may provide one of the promising approaches in synthesizing mechanically stable GO-based thin-film composite membranes that are effective for solute separation via nanofiltration.

14.
Waste Manag Res ; 28(6): 545-51, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19837708

RESUMO

Bhutan lacks the solid waste data which are essential parameters for planning and scheduling of municipal solid waste management (MSWM) systems. The first ever large-scale research survey on solid waste generation and characterization in the urban areas of Bhutan was conducted between November 2007 and January 2008 using the method of waste sampling at source. The MSW generation rates in the urban centres were 0.53 kg capita(-1) day(- 1), which consists predominantly of organic waste materials of up to 58% indicating a great opportunity for composting. Domestic waste from the households contributed the maximum (47%) component of the total MSW generated from the urban centres followed by wastes from the commercial establishments. Attempt to study the correlation between household monthly income and the waste per capita generation rates did not yield any conclusive result.


Assuntos
Resíduos/análise , Butão , Cidades , Demografia , Fatores Socioeconômicos , Gerenciamento de Resíduos , Resíduos/estatística & dados numéricos
15.
Bioresour Technol ; 295: 122303, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31675518

RESUMO

This study assessed impacts of cross-flow velocity (CFV) and air scouring on the performance and membrane fouling mitigation of a side-stream module containing outer-selective hollow fiber thin film composite forward osmosis membrane in osmosis membrane bioreactor (OMBR) system for urban wastewater treatment. CFV of draw solution was optimized, followed by the impact assessment of three CFVs on feed solution (FS) stream and periodic injection of air scouring into the side-stream module. Overall, the OMBR system exhibited high and stable performance with initial water flux of approximately 15 LMH, high removal efficiencies of bulk organic matter and nutrients. While FS's CFVs insignificantly affected the performance and membrane fouling, regular air scouring showed substantial impact with better performance and high efficiency in mitigating membrane fouling. These results indicated that periodic air scouring can be applied into the side-stream membrane module for efficient fouling mitigation without interruption the operation of the OMBR system.


Assuntos
Purificação da Água , Reatores Biológicos , Membranas Artificiais , Osmose , Águas Residuárias
16.
Membranes (Basel) ; 10(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147844

RESUMO

A reliable, robust, and resilient water recovery system is of paramount importance on board the International Space Station (ISS). Such a system must be able to treat all sources of water, thereby reducing resupply costs and allowing for longer-term space missions. As such, technologies able to dewater urine in microgravity have been investigated by different space agencies. However, despite over 50 years of research and advancements on water extraction from human urine, the Urine Processing Assembly (UPA) and the Water Processor Assembly (WPA) now operating on the ISS still achieve suboptimal water recovery rates and require periodic consumables resupply. Additionally, urine brine from the treatment is collected for disposal and not yet reused. These factors, combined with the need for a life support system capable of tolerating even dormant periods of up to one year, make the research in this field ever more critical. As such, in the last decade, extensive research was conducted on the adaptation of existing or emerging technologies for the ISS context. In virtue of having a strong chemical resistance, small footprint, tuneable selectivity and versatility, novel membrane-based processes have been in focus for treating human urine. Their hybridisation with thermal and biological processes as well as the combination with new nanomaterials have been particularly investigated. This article critically reviews the UPA and WPA processes currently in operation on the ISS, summarising the research directions and needs, highlighted by major space agencies, necessary for allowing life support for missions outside the Low Earth Orbit (LEO). Additionally, it reviews the technologies recently proposed to improve the performance of the system as well as new concepts to allow for the valorisation of the nutrients in urine or the brine after urine dewatering.

17.
Water Res ; 186: 116320, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866930

RESUMO

Urine dilution is often performed to avoid clogging or scaling of pipes, which occurs due to urine's Ca2+ and Mg2+ precipitating at the alkaline conditions created by ureolysis. The large salinity gradient between urine and flushing water is, theoretically, a source of potential energy which is currently unexploited. As such, this work explored the use of a compact reverse electrodialysis (RED) system to convert the chemical potential energy of urine dilution into electric energy. Urine' composition and ureolysis state as well as solution pumping costs were all taken into account. Despite having almost double its electric conductivity, real hydrolysed urine obtained net energy recoveries ENet of 0.053-0.039 kWh/m3, which is similar to energy recovered from real fresh urine. The reduced performances of hydrolysed urine were linked to its higher organic fouling potential and possible volatilisation of NH3 due to its high pH. However, the higher-than-expected performance achieved by fresh urine is possibly due to the fast diffusion of uncharged urea to the freshwater side. Real urine was also tested as a novel electrolyte solution and its performance compared with a conventional K4Fe(CN)6/K3Fe(CN)6 couple. While K4Fe(CN)6/K3Fe(CN)6 outperformed urine in terms of power densities and energy recoveries, net chemical reactions seemed to have occurred in urine when used as an electrolyte solution, leading to TOC, ammonia and urea removal of up to 13%, 6% and 4.4%, respectively. Finally, due to the migration of K+, NH4+ and PO43-, the low concentration solution could be utilised for fertigation. Overall, this process has the potential of providing off-grid urine treatment or energy production at a household or building level.


Assuntos
Eletricidade , Salinidade , Eletrodos , Água Doce , Humanos , Urina
18.
Chemosphere ; 234: 536-544, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31229715

RESUMO

The formation of toxic disinfection by-products during water disinfection due to the presence of bromide and iodide is a major concern. Current treatment technologies such as membrane, adsorption and electrochemical processes have been known to have limitations such as high energy demand and excessive chemical use. In this study, the selectivity between bromide and iodide, and their removal in membrane capacitive deionisation (MCDI) was evaluated. The results showed that iodide was more selectively removed over bromide from several binary feed waters containing bromide and iodide under various initial concentrations and applied voltages. Even in the presence of significant background concentration of sodium chloride, definite selectivity of iodide over bromide was observed. The high partial-charge transfer coefficient of iodide compared to bromide could be a feasible explanation for high iodide selectivity since both bromide and iodide have similar ionic charge and hydrated radius. The result also shows that MCDI can be a potential alternative for the removal of bromide and iodide during water treatment.


Assuntos
Brometos/isolamento & purificação , Desinfecção/métodos , Iodetos/isolamento & purificação , Adsorção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos
19.
Bioresour Technol ; 282: 9-17, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30849738

RESUMO

This paper investigates the efficiency of fouling mitigation methods using a novel outer selective hollow fiber thin-film composite forward osmosis (OSHF TFC FO) membrane for osmosis membrane bioreactor (OMBR) system treating municipal wastewater. Two home-made membrane modules having similar transport properties were used. Two operation regimes with three different fouling mitigation strategies were utilized to test the easiness of membrane for fouling cleaning. These two membrane modules demonstrated high performance with high initial water flux of 14.4 LMH and 14.1 LMH and slow increase rate of mixed liquor's salinity in the bioreactor using 30 g/L NaCl as draw solution. OMBR system showed high removals of total organic carbon and NH4 + -N (>98%). High fouling cleaning efficiency was achieved using OSHF TFC FO membrane with different fouling control methods. These results showed that this membrane is suitable for OMBR applications due to its high performance and its simplicity for fouling mitigation.


Assuntos
Reatores Biológicos , Osmose , Salinidade , Águas Residuárias
20.
J Hazard Mater ; 378: 120724, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326765

RESUMO

Human urine is a unique solution that has the right composition to constitute both a severe environmental threat and a rich source of nitrogen and phosphorous. In fact, between 4-9% of urine mass consists of ions, such as K+, Cl-, Na+ or NH4+. Because of its high ionic strength, urine osmotic pressure can reach values of up to 2000 kPa. With this in mind, this work aimed to study the effectiveness of real urine as a novel draw solution for forward osmosis. Water flux, reverse nitrogen flux and membrane fouling were investigated using fresh or hydrolysed urine. Water flux as high as 16.7 ± 1.1 L m-2 h-1 was recorded using real hydrolysed urine. Additionally, no support layer membrane fouling was noticed in over 20 h of experimentation. Urine was also employed to dewater a Chlorella vulgaris culture. A fourfold increase in algal concentration was achieved while having an average flux of 14.1 L m-2 h-1. During the algae dewatering, a flux decrease of about 19% was noticed; this was mainly due to a thin layer of algal deposition on the active side of the membrane. Overall, human urine was found to be an effective draw solution for forward osmosis.


Assuntos
Microalgas/química , Osmose , Urina/química , Algoritmos , Carboidratos/biossíntese , Chlorella vulgaris , Filtração , Humanos , Membranas Artificiais , Microalgas/metabolismo , Nitrogênio/química , Água/química , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA