RESUMO
Background and Objectives: The coronavirus disease 2019 (COVID-19) pandemic originated in Wuhan, China, in December 2019, the first case diagnosed since January 2020 in Taiwan. The study about the potential impact of the COVID-19 pandemic on event, location, food source, and pathogens of foodborne disease (FBD) is limited in Taiwan. Our aim in this study is to investigate FBD in the context of the COVID-19 pandemic. Materials and Methods: We collected publicly available annual summary data from the FBD dataset in the Taiwan Food and Drug Administration and Certifiable Disease on reported FBD in Taiwan from 2019 to 2020. We used logistic regression to evaluate changes in the occurrence or likelihood of FBD cases and Poisson regression to examine the relative risk (RR) between FBD and climate factors. Results: Similar events occurred in 2019 and 2020, but the total number of FBD cases decreased from 6935 in 2019 to 4920 in 2020. The places where FBD decreased were in schools, hospitals, outdoors, vendors, and exteriors. The top place in FBD shifted from schools to restaurants. The top food source for FBD has changed from boxed food to compound food. Bacillus cereus and Salmonella emerged as the top two observed bacterial pathogens causing FBD. The risk of FBD cases increased with a higher air temperature, with an RR of 1.055 (1.05-1.061, p < 0.001) every 1 °C. Conclusion: The incidence of FBD decreased significantly during the COVID-19 pandemic in Taiwan. This decline may be attributed to protective measures implemented to control the spread of the virus. This shift in locations could be influenced by changes in public behavior, regulations, or other external factors. The study emphasizes the importance of understanding the sources and effectiveness of severe infection prevention policies. The government can use these findings to formulate evidence-based policies aimed at reducing FBD cases and promoting public health. Consumers can reduce the risk of FBD by following safe food handling and preparation recommendations.
Assuntos
COVID-19 , Doenças Transmitidas por Alimentos , Humanos , COVID-19/epidemiologia , Pandemias , Taiwan/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Saúde PúblicaRESUMO
Background and Objectives: Hearing loss after septicemia has been found in mice; the long-term risk increased 50-fold in young adults in a previous study. Hearing loss after septicemia has not received much attention. The aim of this study was to assess the relationship between septicemia and subsequent hearing loss. Materials and Methods: Inpatient data were obtained from the Taiwan Insurance Database. We defined patients with sensorineural hearing loss and excluded patients under 18 years of age. Patients without hearing loss were selected as controls at a frequency of 1:5. The date of admission was defined as the date of diagnosis. Comorbidities in the 3 years preceding the date of diagnosis were retrieved retrospectively. Associations with hearing loss were established by multiple logistic regression and forward stepwise selection. Results: The odds ratio (OR) for the association between sepsis and hearing loss was 3.052 (95% CI: 1.583-5.884). Autoimmune disease (OR: 5.828 (95% CI: 1.906-17.816)), brain injury (OR: 2.264 (95% CI: 1.212-4.229)) and ischemic stroke (OR: 1.47 (95% CI: 1.087-1.988)) were associated with hearing loss. Conclusions: Our study shows that hearing loss occurred after septicemia. Apoptosis caused by sepsis and ischemia can lead to hair cell damage, leading to hearing loss. Clinicians should be aware of possible subsequent complications of septicemia and provide appropriate treatment and prevention strategies for complications.
Assuntos
Surdez , Perda Auditiva Neurossensorial , Sepse , Adulto Jovem , Humanos , Animais , Camundongos , Adolescente , Estudos Retrospectivos , Fatores de Risco , Comorbidade , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/epidemiologia , Sepse/complicações , Sepse/epidemiologiaRESUMO
BACKGROUND: SCL/TAL1 interrupting locus (STIL) is associated with the progression of several tumors; however, the biological role of STIL in osteosarcoma remains poorly understood. METHODS: In this study, the clinical significance of STIL in osteosarcoma was analyzed by gene chip data recorded in public databases. STIL expression was silenced in osteosarcoma cell lines to observe the effects on proliferation, apoptosis, invasion, and migration. Differentially expressed genes (DEGs) in the osteosarcoma chip were analyzed using The Limma package, and STIL co-expressed genes were obtained via the Pearson correlation coefficient. The potential molecular mechanism of STIL in osteosarcoma was further explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS: Osteosarcoma was associated with higher STIL expression compared to the control samples, and the standardized mean difference (SMD) was 1.52. STIL also had a good ability to distinguish osteosarcoma from non-osteosarcoma samples [area under the curve (AUC) = 0.96]. After silencing STIL, osteosarcoma cell proliferation decreased, apoptosis increased, and the migratory and invasion ability decreased. A total of 294 STIL differentially co-expressed genes were screened, and a bioinformatics analysis found that differentially co-expressed genes were primarily enriched in the cell signaling pathways. The protein-protein interaction (PPI) network indicated that the hub differentially co-expressed genes of STIL were CDK1, CCNB2, CDC20, CCNA2, BUB1, and AURKB. CONCLUSIONS: STIL is associated with osteosarcoma proliferation and invasion, and may be promote the progression of osteosarcoma by regulating the expression of CDK1, CCNB2, CDC20, CCNA2, BUB1 and AURKB.
RESUMO
AIM: This study aimed to identify the epidemiological characteristics and transmission dynamics of paediatric cases. METHODS: Information on 1369 paediatric cases with COVID-19 from 8 December 2019 to 7 March 2020 in Hubei province was extracted from the National Infectious Disease Surveillance System. The analysis included epidemic curves, temporal-spatial distribution, clinical classification and interval times between onset and diagnosis. RESULTS: Among 1369 paediatric cases, the median age was 9 years and 58.2% of them were males. The proportion of severe and critical cases in children was lower than that in adults and the proportion of asymptomatic cases in children was five times greater than for adult cases. The first paediatric case was reported on 2 January 2020, and the daily number of new paediatric cases remained high from 1 February through to 22 February. The epidemiological curve of paediatric cases lagged behind that of adults by 19 days, and the first spike of the epidemic curve in senior high school students occurred 1 week earlier than in other paediatric groups. The proportion of clustered cases among children was about twice that for adults. The median of the interval in paediatric cases between onset and diagnosis, isolation and notification were 3, 0 and 3 days, respectively, and all of those were significantly shorter than in adults. CONCLUSIONS: The epidemic curve of child cases lagged behind that of adult cases by 19 days, and the major form of transmission observed was in clusters.
Assuntos
COVID-19 , Adulto , Criança , China/epidemiologia , Feminino , Humanos , Masculino , SARS-CoV-2RESUMO
By collecting the magnetic field information of each spatial point, we can build a magnetic field fingerprint map. When the user is positioning, the magnetic field measured by the sensor is matched with the magnetic field fingerprint map to identify the user's location. However, since the magnetic field is easily affected by external magnetic fields and magnetic storms, which can lead to "local temporal-spatial variation", it is difficult to construct a stable and accurate magnetic field fingerprint map for indoor positioning. This research proposes a new magnetic indoor positioning method, which combines a magnetic sensor array composed of three magnetic sensors and a recurrent probabilistic neural network (RPNN) to realize a high-precision indoor positioning system. The magnetic sensor array can detect subtle magnetic anomalies and spatial variations to improve the stability and accuracy of magnetic field fingerprint maps, and the RPNN model is built for recognizing magnetic field fingerprint. We implement an embedded magnetic sensor array positioning system, which is evaluated in an experimental environment. Our method can reduce the noise caused by the spatial-temporal variation of the magnetic field, thus greatly improving the indoor positioning accuracy, reaching an average positioning accuracy of 0.78 m.
Assuntos
Algoritmos , Redes Neurais de Computação , Campos Magnéticos , MagnetismoRESUMO
The nervous system is a significant part of the human body, and peripheral nerve injury caused by trauma can cause various functional disorders. When the broken end defect is large and cannot be repaired by direct suture, small gap sutures of nerve conduits can effectively replace nerve transplantation and avoid the side effect of donor area disorders. There are many choices for nerve conduits, and natural materials and synthetic polymers have their advantages. Among them, the nerve scaffold should meet the requirements of good degradability, biocompatibility, promoting axon growth, supporting axon expansion and regeneration, and higher cell adhesion. Polymer biological scaffolds can change some shortcomings of raw materials by using electrospinning filling technology and surface modification technology to make them more suitable for nerve regeneration. Therefore, polymer scaffolds have a substantial prospect in the field of biomedicine in future. This paper reviews the application of nerve conduits in the field of repairing peripheral nerve injury, and we discuss the latest progress of materials and fabrication techniques of these polymer scaffolds.
Assuntos
Tecnologia Biomédica , Nervos Periféricos/fisiologia , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Matriz Extracelular/metabolismo , HumanosRESUMO
Ergosterol is an important fungal-specific biomarker, but its use for fungal biomass estimation is still varied. It is important to distinguish between free and esterified ergosterols, which are mainly located on the plasma membrane and the cytosolic lipid particles, respectively. The present study analyzes free and esterified ergosterol contents in: (1) the fifty-nine strains of culturable fungi isolated from mangrove soil, (2) the broken spores of the fungus Ganoderma lucidum stored in capsule for more than 12 years, and (3) the mangrove soil and nearby campus wood soil samples by high performance liquid chromatography (HPLC). The results show that the contents of free and esterified ergosterols varied greatly in fifty-nine strains of fungi after 5 days of growth, indicating the diversity of ergosterol composition in fungi. The average contents of free and total ergosterols from the fifty-nine strains of fungi are 4.4 ± 1.5 mg/g and 6.1 ± 1.9 mg/g dry mycelia, respectively, with an average ergosterol esterification rate of 27.4%. The present study suggests that the fungi might be divided into two classes, one is fungi with high esterification rates (e.g., more than 27%) such as Nectria spp. and Fusarium spp., and the other is fungi with low esterification rates (e.g., less than 27%) such as Penicillium spp. and Trichoderma spp. Moreover, the ergosterol esterification rate in the spores of G. lucidum is 91.4% with a very small amount of free ergosterol (0.015 mg/g), compared with 41.9% with a higher level of free ergosterol (0.499 mg/g) reported in our previous study in 2007, indicating that free ergosterol degrades more rapidly than esterified ergosterol. In addition, the ergosterol esterification rates in mangrove soil and nearby campus wood soil samples range from 0 to 39.0%, compared with 80% in an old soil organic matter reported in a previous study, indicating the potential relationship between aging degree of fungi or soil and esterification rate. The present study proposes that both free and esterified ergosterols should be analyzed for fungal biomass estimation. When the ergosterol esterification rates in soils are higher, free ergosterol might be a better marker for fungal biomass. It is speculated that the ergosterol esterification rate in soils might contain some important information, such as the age of old-growth forests over time scales of centuries to millennia, besides the senescence degree of fungal mycelia in soils. KEY POINTS: ⢠Fungi might be divided into two classes depending on ergosterol esterification rates. ⢠Ergosterol esterification rate of broken spores stored for long time raised evidently. ⢠Both free and esterified ergosterols should be analyzed for fungal biomass estimate. ⢠Free ergosterol is a better marker for fungal biomass with a high esterification rate.
Assuntos
Ergosterol/química , Fungos/metabolismo , Microbiologia do Solo , Esporos Fúngicos/metabolismo , Biomassa , Cromatografia Líquida de Alta Pressão , Esterificação , Fungos/classificação , Fungos/isolamento & purificação , Micélio/metabolismo , Reishi/isolamento & purificação , Reishi/metabolismo , Áreas AlagadasRESUMO
Bovine aortic endothelial cells (BAECs) were cultured with high glucose (33 mmol/L), 4 mg/L green tea polyphenols (GTPs) or 4 mg/L GTPs co-treatment with high glucose for 24 h in the presence or absence of Bafilomycin-A1 (BAF). We observed that high glucose increased the accumulation of LC3-II. Treatment with BAF did not further increase the accumulation of LC3-II. Results also showed an increased level of p62 and decreased Beclin-1. However, GTPs showed inversed trends of those proteins. Furthermore, GTPs co-treatment with high glucose decreased the level of LC3-II and a much higher accumulation of LC3-II was observed in the presence of BAF in comparison with high glucose alone. Results also showed a decreased p62 and increased Beclin-1. The results demonstrated that GTPs alleviated autophagy inhibition induced by high glucose, which may be involved in the endothelial protective effects of green tea against hyperglycemia.
Assuntos
Autofagia/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glucose/toxicidade , Polifenóis/farmacologia , Chá/química , Animais , Bovinos , Células Cultivadas , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Macrolídeos/farmacologia , Polifenóis/químicaRESUMO
Fifty male Wistar rats were fed a standard chow diet or a high-fat (HF) diet, and different concentrations of green tea polyphenols (GTPs) (0.8, 1.6, and 3.2 g/L) were administered in the drinking water. We found that the malondialdehyde (MDA) level in the HF diet group was significantly higher than that in the control (CON) group (P<0.05). Decreased peroxisome proliferator-activated receptor (PPAR)-α and sirtuin 3 (SIRT3) expression, and increased manganese superoxide dismutase (MnSOD) acetylation levels were also detected in the HF diet group (P<0.05). GTP treatment upregulated SIRT3 and PPARα expression, increased the pparα mRNA level, reduced the MnSOD acetylation level, and decreased MDA production in rats fed a HF diet (P<0.05). No significant differences in total renal MnSOD and PPAR-γ coactivator-1α (PGC1-α) expression were detected. The reduced oxidative stress detected in kidney tissues after GTP treatment was partly due to the higher SIRT3 expression, which was likely mediated by PPARα.
Assuntos
Antioxidantes/farmacologia , Dieta Hiperlipídica/efeitos adversos , Rim/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Sirtuína 3/metabolismo , Chá/química , Acetilação/efeitos dos fármacos , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND & PROBLEMS: The Bureau of Health Promotion provides oral mucosal screening services for those at high-risk of oral cancer in order to detect and treat early-stage oral cancer. However, the low rate of follow up for abnormal cases been associated with a rising mortality rate. PURPOSE: This project seeks to improve the follow-up rate of patients with abnormal oral mucosal diagnoses at our hospital. RESOLUTIONS: We analyzed the current data and found that reasons for poor follow up included: patients' lack of knowledge, inconvenience in accessing the hospital, unwillingness to pay additional fees, and inadequate health education from healthcare providers. Therefore, we proposed several action measures that were developed between June and October 2012. These measures included: designating healthcare staff for oral mucosal screening, improving procedures in oral mucosal screening, tracking and referral of abnormal cases, encouraging medical staff to provide more health education in clinical sessions, and increasing distribution of health-education materials. RESULTS: After implementation, the follow-up rate for abnormal oral mucosal cases in our hospital increased from 64.2% to 95.3%. CONCLUSIONS: This project significantly improved the follow-up rate for abnormal oral mucosal cases as part of our overall goal of the early detection and treatment of oral cancer.
Assuntos
Detecção Precoce de Câncer , Mucosa Bucal/patologia , Neoplasias Bucais/diagnóstico , Seguimentos , Hospitais , HumanosRESUMO
Anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts. By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units, the d-orbital and electronic structures can be adjusted, which is an important strategy to achieve sufficient oxygen evolution reaction (OER) performance in AEMWEs. Herein, the ternary NiFeM (M: La, Mo) catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work. Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen, resulting in enhanced adsorption strength of oxygen intermediates, and reduced rate-determining step energy barrier, which is responsible for the enhanced OER performance. More critically, the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm-2 in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
RESUMO
BACKGROUND: Traditional Chinese medicine (TCM) is frequently utilized as a complementary therapy for breast cancer patients. TCM primarily involves the use of Chinese herbal products (CHPs), which consist of single or multiherb formulas with diverse therapeutic effects documented in medical classics. The study aims to investigate the association between medication possession ratios to CHPs within 2-year post breast cancer diagnosis and 5-year survival, to explore the potential beneficial class effect of TCM. METHODS: This retrospective population-based cohort study included newly diagnosed breast cancer patients between 2003 and 2006, identified from the National Health Insurance Research Database of Taiwan. Logistic regression and Cox proportional hazards analysis were utilized to assess the likelihood of medication possession ratios (MPRs) for CHPs and to examine the association of variables with 5-year survival. RESULTS: A total of 3472 patients with breast cancer were included. Patients who had MPR of 1% to 9% and 10% to 19% for CHPs within 2 years after breast cancer diagnosis exhibited better 5-year survival rates compared with those who did not use CHPs (adjusted hazard ratio [aHR] 0.69, 95% confidence interval [CI] 0.55-0.86, p = 0.001; aHR 0.50, 95% CI 0.28-0.88, p = 0.016). Furthermore, the use of TCM formulations specifically targeting insomnia, such as Tian-wang-bu-xin-dan and Suan-zao-ren-tang, demonstrated a significantly positive association with survival (aHR 0.71, 95% CI 0.52-0.98, p = 0.035) among patients who were short-term users of CHPs (MPR of 1% to 19%). CONCLUSION: Short-term use of TCM (ie, MPR to CHPs 1~19%) within 2-year post breast cancer diagnosis present positive association with survival outcome. Tian-wang-bu-xin-dan and Suan-zao-ren-tang may have benefits to 5-year survival, but their causality still need further investigation.
Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Humanos , Feminino , Medicina Tradicional Chinesa , Neoplasias da Mama/tratamento farmacológico , Estudos Retrospectivos , Estudos de Coortes , Padrões de Prática Médica , Medicamentos de Ervas Chinesas/uso terapêutico , TaiwanRESUMO
Functional appendage regeneration is essential for skin rehabilitation, but it has always failed by current existing healing approaches, owing to their inefficacy in preventing disfiguring scars. In this study, a novel regeneration-directing artificial skin (RDAS) system is presented, which is based on the rational design of multi-layered hydrogels that closely mimic natural skin matrices. By leveraging the programmability and architectural rigidity of DNA components, without the need for exogenous cell transplantation, such RDAS effectively minimizes tissue fibrosis by accurately guiding the regenerative process in wound fibroblasts, enabling rapid scarless wound repair, restoration of dermal function, and successful in situ regeneration of multiple appendages, such as hair follicles (HFs), sebaceous glands (SGs), and sweat glands (SwGs). Therefore, the RDAS offers a cell-free antiscarring therapeutic strategy for regenerative wound healing, resulting in improved outcomes. This innovative approach holds great potential for future clinical applications and burn rehabilitation.
RESUMO
Sweat gland (SwG) regeneration is crucial for the functional rehabilitation of burn patients. In vivo chemical reprogramming that harnessing the patient's own cells in damaged tissue is of substantial interest to regenerate organs endogenously by pharmacological manipulation, which could compensate for tissue loss in devastating diseases and injuries, for example, burns. However, achieving in vivo chemical reprogramming is challenging due to the low reprogramming efficiency and an unfavorable tissue environment. Herein, this work has developed a functionalized proteinaceous nanoformulation delivery system containing prefabricated epidermal growth factor structure for on-demand delivery of a cocktail of seven SwG reprogramming components to the dermal site. Such a chemical reprogramming system can efficiently induce the conversion of epidermal keratinocytes into SwG myoepithelial cells, resulting in successful in situ regeneration of functional SwGs. Notably, in vivo chemical reprogramming of SwGs is achieved for the first time with an impressive efficiency of 30.6%, surpassing previously reported efficiencies. Overall, this proteinaceous nanoformulation provides a platform for coordinating the target delivery of multiple pharmacological agents and facilitating in vivo SwG reprogramming by chemicals. This advancement greatly improves the clinical accessibility of in vivo reprogramming and offers a non-surgical, non-viral, and cell-free strategy for in situ SwG regeneration.
Assuntos
Reprogramação Celular , Animais , Humanos , Camundongos , Reprogramação Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Regeneração/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/citologia , Nanopartículas/químicaRESUMO
Remodeling the endogenous regenerative microenvironment in wounds is crucial for achieving scarless, functional tissue regeneration, especially the functional recovery of skin appendages such as sweat glands in burn patients. However, current approaches mostly rely on the use of exogenous materials or chemicals to stimulate cell proliferation and migration, while the remodeling of a pro-regenerative microenvironment remains challenging. Herein, we developed a flexible sono-piezo patch (fSPP) that aims to create an endogenous regenerative microenvironment to promote the repair of sweat glands in burn wounds. This patch, composed of multifunctional fibers with embedded piezoelectric nanoparticles, utilized low-intensity pulsed ultrasound (LIPUS) to activate electrical stimulation of the target tissue, resulting in enhanced pro-regenerative behaviors of niche tissues and cells, including peripheral nerves, fibroblasts, and vasculatures. We further demonstrated the effective wound healing and regeneration of functional sweat glands in burn injuries solely through such physical stimulation. This noninvasive and drug-free therapeutic approach holds significant potential for the clinical treatment of burn injuries.
RESUMO
(1) Background: An asthma exacerbation that is not relieved with medication typically requires an emergency room visit (ERV). The coronavirus disease 2019 (COVID-19) pandemic began in Taiwan in January of 2020. The influence of the COVID-19 pandemic on pediatric ERVs in Taiwan was limited. Our aim was to survey pediatric asthma ERVs in the COVID-19 era; (2) Methods: Data were collected from the health quality database of the Taiwanese National Health Insurance Administration from 2019 to 2021. Air pollution and climatic factors in Taipei were used to evaluate these relationships. Changes in the rates of pediatric asthma ERVs were assessed using logistic regression analysis. Poisson regression was used to evaluate the impact of air pollution and climate change; (3) Results: The rate of pediatric asthma ERVs declined in different areas and at different hospital levels including medical centers, regional and local hospitals. Some air pollutants (particulate matter ≤ 2.5 µm, particulate matter ≤ 10 µm, nitrogen dioxide, and carbon monoxide) reduced during the COVID-19 lockdown. Ozone increased the relative risk (RR) of pediatric asthma ERVs during the COVID-19 period by 1.094 (95% CI: 1.095-1.12) per 1 ppb increase; (4) Conclusions: The rate of pediatric asthma ERVs declined during the COVID-19 pandemic and ozone has harmful effects. Based on these results, the government could reduce the number of pediatric asthma ERVs through healthcare programs, thereby promoting children's health.
RESUMO
We previously combined reduced graphene oxide (rGO) with gelatin-methacryloyl (GelMA) and polycaprolactone (PCL) to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved. However, the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting. Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSCs) can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site. In this study, 12 weeks after surgery, sciatic nerve function was measured by electrophysiology and sciatic nerve function index, and myelin sheath and axon regeneration were observed by electron microscopy, immunohistochemistry, and immunofluorescence. The regeneration of microvessel was observed by immunofluorescence. Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function. These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery, and provide a new direction for the curation of peripheral nerve defect in the clinic.
RESUMO
Exploring efficient, stable and multifunctional Earth-rich electrocatalysts is vital for hydrogen generation. Hence, an efficient heterostructure consisting of cauliflower-like NiFe alloys anchored on flake iron nickel carbonate hydroxide which is supported on carbon cloth (NiFe/NiFeCH/CC) was synthesized as a trifunctional electrocatalyst for efficient hydrogen production by overall water and urea splitting. While optimizing and regulating the ratio of Ni to Fe, benefiting from the special morphology and synergistic effect between the NiFe alloy and NiFeCH, the NiFe/NiFeCH/CC heterostructure exhibits outstanding oxygen evolution reaction (OER) performance with a low overpotential of 190 mV at 10 mA cm-2 after a stability test for 150 h. Notably, when the NiFe/NiFeCH/CC heterostructure is used as both the anode and cathode simultaneously, it merely requires a cell voltage of 1.49 V for the overall water splitting and 1.39 V for urea electrolysis at 10 mA cm-2 with excellent durability. Thus, this work not just provides the application of NiFe-based catalysts in overall water splitting, but also offers a viable method for the treatment of urea-rich wastewater.
RESUMO
In this study, an electrochemical immunosensor was constructed to detect the cytokeratin 19 fragment antigen 21-1 (CYFRA 21-1) in human serum. CYFRA 21-1 is the most sensitive tumor marker of non-small cell lung cancer (NSCLC), its content in normal human serum should be less than 3.3 ng/mL. When lung cancer cells dissolve or die, a myriad of CYFRA 21-1 is released into a tumor patient's blood circulation, and its serum content elevates strikingly. Consequently, detecting CYFRA 21-1 by an electrochemical biosensor is expected to provide a new method for the early detection and prevention of lung cancer. In this study, a composite of UiO-66-NH2 and carboxylated multi-walled carbon nanotubes (CMWCNTs) was used as the substrate material of a sensor; the resulting sensor had a large specific surface area and strong electrical conductivity. Moreover, gold nanoparticles (AuNPs) were used to bind to antibodies through an Au-S bonds. Also, a supersensitive detection of CYFRA 21-1 was achieved through the specific bindings of antigens and antibodies. Under optimal detection conditions, the change of current signal intensity of the immunosensor was proportional to the logarithm of CYFRA 21-1 concentration and had a linear relation in the range of 0.005-400 ng/mL, while the detection limit was 1.15 pg/mL (S/N = 3). The proposed immunosensor had high precision, stability, and selectivity. More importantly, the sensor was been successfully applied to detect CYFRA 21-1 in human serum with high recovery, providing a new method for early screening and dynamic monitoring of lung cancer.
Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas Metálicas , Nanotubos de Carbono , Humanos , Ouro , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Imunoensaio , AnticorposRESUMO
Background: Promoting rapid wound healing with functional recovery of all skin appendages is the main goal of regenerative medicine. So far current methodologies, including the commonly used back excisional wound model (BEWM) and paw skin scald wound model, are focused on assessing the regeneration of either hair follicles (HFs) or sweat glands (SwGs). How to achieve de novo appendage regeneration by synchronized evaluation of HFs, SwGs and sebaceous glands (SeGs) is still challenging. Here, we developed a volar skin excisional wound model (VEWM) that is suitable for examining cutaneous wound healing with multiple-appendage restoration, as well as innervation, providing a new research paradigm for the perfect regeneration of skin wounds. Methods: Macroscopic observation, iodine-starch test, morphological staining and qRT-PCR analysis were used to detect the existence of HFs, SwGs, SeGs and distribution of nerve fibres in the volar skin. Wound healing process monitoring, HE/Masson staining, fractal analysis and behavioral response assessment were performed to verify that VEWM could mimic the pathological process and outcomes of human scar formation and sensory function impairment. Results: HFs are limited to the inter-footpads. SwGs are densely distributed in the footpads, scattered in the IFPs. The volar skin is richly innervated. The wound area of the VEWM at 1, 3, 7 and 10 days after the operation is respectively 89.17% ± 2.52%, 71.72% ± 3.79%, 55.09 % ± 4.94% and 35.74% ± 4.05%, and the final scar area accounts for 47.80% ± 6.22% of the initial wound. While the wound area of BEWM at 1, 3, 7 and 10 days after the operation are respectively 61.94% ± 5.34%, 51.26% ± 4.89%, 12.63% ± 2.86% and 6.14% ± 2.84%, and the final scar area accounts for 4.33% ± 2.67% of the initial wound. Fractal analysis of the post-traumatic repair site for VEWM vs human was performed: lacunarity values, 0.040 ± 0.012 vs 0.038 ± 0.014; fractal dimension values, 1.870 ± 0.237 vs 1.903 ± 0.163. Sensory nerve function of normal skin vs post-traumatic repair site was assessed: mechanical threshold, 1.05 ± 0.52 vs 4.90 g ± 0.80; response rate to pinprick, 100% vs 71.67% ± 19.92%, and temperature threshold, 50.34°C ± 3.11°C vs 52.13°C ± 3.54°C. Conclusions: VEWM closely reflects the pathological features of human wound healing and can be applied for skin multiple-appendages regeneration and innervation evaluation.