Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Rep ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717742

RESUMO

Covering 2016 up to the end of 2023Alpinia is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many Alpinia are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on Alpinia species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that Alpinia species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.

2.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893341

RESUMO

Perilla frutescens var. acuta (Lamiaceae) is widely used not only as an oil or a spice, but also as a traditional medicine to treat colds, coughs, fever, and indigestion. As an ongoing effort, luteolin-7-O-diglucuronide (1), apigenin-7-O-diglucuronide (2), and rosmarinic acid (3) isolated from P. frutescens var. acuta were investigated for their anti-adipogenic and thermogenic activities in 3T3-L1 cells. Compound 1 exhibited a strong inhibition against adipocyte differentiation by suppressing the expression of Pparg and Cebpa over 52.0% and 45.0%, respectively. Moreover, 2 inhibited the expression of those genes in a dose-dependent manner [Pparg: 41.7% (5 µM), 62.0% (10 µM), and 81.6% (50 µM); Cebpa: 13.8% (5 µM), 18.4% (10 µM), and 37.2% (50 µM)]. On the other hand, the P. frutescens var. acuta water extract showed moderate thermogenic activities. Compounds 1 and 3 also induced thermogenesis in a dose-dependent manner by stimulating the mRNA expressions of Ucp1, Pgc1a, and Prdm16. Moreover, an LC-MS/MS chromatogram of the extract was acquired using UHPLC-MS2 and it was analyzed by feature-based molecular networking (FBMN) and the Progenesis QI software (version 3.0). The chemical profiling of the extract demonstrated that flavonoids and their glycoside derivatives, including those isolated earlier as well as rosmarinic acid, are present in P. frutescens var. acuta.


Assuntos
Células 3T3-L1 , Fármacos Antiobesidade , Cinamatos , Depsídeos , Perilla frutescens , Extratos Vegetais , Ácido Rosmarínico , Camundongos , Perilla frutescens/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Depsídeos/farmacologia , Depsídeos/química , Depsídeos/isolamento & purificação , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Cinamatos/farmacologia , Cinamatos/química , Cinamatos/isolamento & purificação , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Termogênese/efeitos dos fármacos
3.
Molecules ; 26(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921835

RESUMO

Zingiber cassumunar Roxb. (Zingiberaceae), is an important medicinal plant known as "Plai (Phlai)" in Thailand, "Bangle" in Indonesia, and "Bulei" in China. Traditionally, this plant has been used to treat inflammation, pain, and respiratory problems. The rhizomes are the primary part of the plant that has been used for medicinal purposes due to their constituents with therapeutic properties, including phenylbutenoids, curcuminoids, and essential oils. Since the 1970s, many studies have been conducted on the phytochemicals and bioactivities of Z. cassumunar to establish fundamental scientific evidence that supports its use in traditional medicine. The accumulated biological studies on the extracts, solvent fractions, and constituents of Z. cassumunar have described their diverse medicinal properties, including antioxidant, anti-inflammatory, anticancer, neuroprotective/neurotrophic, cosmeceutical, and antifungal/antimicrobial bioactivities. In this review, we summarize information on the phytochemicals of Z. cassumunar and the bioactivities of its extracts and constituents.


Assuntos
Compostos Fitoquímicos/química , Zingiberaceae/química , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Humanos , Óleos Voláteis/química , Extratos Vegetais/química , Plantas Medicinais/química
4.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801065

RESUMO

Alpinia oxyphylla Miquel (Zingiberaceae) has been reported to show antioxidant, anti-inflammatory, and neuroprotective effects. In this study, two new eudesmane sesquiterpenes, 7α-hydroperoxy eudesma-3,11-diene-2-one (1) and 7ß-hydroperoxy eudesma-3,11-diene-2-one (2), and a new eremophilane sesquiterpene, 3α-hydroxynootkatone (3), were isolated from the MeOH extract of dried fruits of A. oxyphylla along with eleven known sesquiterpenes (4-14). The structures were elucidated by the analysis of 1D/2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and optical rotation data. Compounds (1-3, 5-14) were evaluated for their protective effects against tert-butyl hydroperoxide (tBHP)-induced oxidative stress in adipose-derived mesenchymal stem cells (ADMSCs). As a result, treatment with isolated compounds, especially compounds 11 and 12, effectively reverted the damage of tBHP on ADMSCs in a dose-dependent manner. In particular, 11 and 12 at 50 µM improved the viability of tBHP-toxified ADMSCs by 1.69 ± 0.05-fold and 1.61 ± 0.03-fold, respectively.


Assuntos
Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Sesquiterpenos Policíclicos , Sesquiterpenos de Eudesmano , Tecido Adiposo/citologia , Alpinia , Animais , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/farmacologia
5.
FASEB J ; 33(8): 9685-9694, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145860

RESUMO

Excessive osteoclast activity can lead to an imbalance between the synthesis and breakdown of bone, with pathologic consequences that include osteoporosis and periodontitis. Thus, controlling osteoclast differentiation and function has significant therapeutic implications. In this study, we investigated the effects of dehydrocostus lactone (DL) on osteoclast differentiation and activation and elucidated the possible mechanisms underlying these processes. DL suppressed osteoclast differentiation by reducing the expression of the nuclear factor of activated T-cells, cytoplasmic 1. When used to challenge differentiated osteoclasts, DL also effectively inhibited their enlargement and resorption activity, and biochemical approaches revealed that DL attenuates osteoclast activation by inhibiting the migration and lysosome biogenesis and secretion via the down-regulation of integrin ß3, PKC-ß, and autophagy related 5 expression. Furthermore, DL prevented bone destruction in inflammation- and ovariectomy-induced osteolytic mouse models. These results indicate that DL has therapeutic potential to treat bone diseases caused by excessive or hyperactive osteoclasts.-Lee, H. I., Lee, J., Hwang, D., Lee, G.-R., Kim, N., Kwon, M., Lee, H., Piao, D., Kim, H. J., Kim, N. Y., Kim, H. S., Seo, E. K., Kang, D., Jeong, W. Dehydrocostus lactone suppresses osteoclast differentiation by regulating NFATc1 and inhibits osteoclast activation through modulating migration and lysosome function.


Assuntos
Lactonas/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Sesquiterpenos/farmacologia , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Osteoclastos/citologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA