Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Pathog ; 17(9): e1009840, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499689

RESUMO

COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, therapeutics that can help manage the disease are still required until immunity has been achieved globally. The identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2-ΔOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in-line with reported proteinuria and liver damage in patients with COVID-19. Using the nano-luciferase as a measure of virus replication we identified 35 drugs that reduced replication in Vero cells and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID.


Assuntos
Tratamento Farmacológico da COVID-19 , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Animais , Biomarcadores , Linhagem Celular , Chlorocebus aethiops , Hepatócitos/virologia , Humanos , Luciferases/farmacologia , Nanoestruturas , SARS-CoV-2/genética , Células Vero , Replicação Viral/efeitos dos fármacos
2.
FASEB J ; 33(6): 7479-7489, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30888851

RESUMO

Dysregulation of collagen synthesis is associated with disease progression in cancer and fibrosis. Collagen synthesis is coordinated with the circadian clock, which in cancer cells is, curiously, deregulated by endoplasmic reticulum (ER) stress. We hypothesized interplay between circadian rhythm, collagen synthesis, and ER stress in normal cells. Here we show that fibroblasts with ER stress lack circadian rhythms in gene expression upon clock-synchronizing time cues. Overexpression of binding immunoglobulin protein (BiP) or treatment with chemical chaperones strengthens the oscillation amplitude of circadian rhythms. The significance of these findings was explored in tendon, where we showed that BiP expression is ramped preemptively prior to a surge in collagen synthesis at night, thereby preventing protein misfolding and ER stress. In turn, this forestalls activation of the unfolded protein response in order for circadian rhythms to be maintained. Thus, targeting ER stress could be used to modulate circadian rhythm and restore collagen homeostasis in disease.-Pickard, A., Chang, J., Alachkar, N., Calverley, B., Garva, R., Arvan, P., Meng, Q.-J., Kadler, K. E. Preservation of circadian rhythms by the protein folding chaperone, BiP.


Assuntos
Ritmo Circadiano , Proteínas de Choque Térmico/metabolismo , Dobramento de Proteína , Animais , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Homeostase , Camundongos , Camundongos Transgênicos
3.
PLoS Pathog ; 11(6): e1004988, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26107517

RESUMO

Cervical cancer is a multi-stage disease caused by human papillomaviruses (HPV) infection of cervical epithelial cells, but the mechanisms regulating disease progression are not clearly defined. Using 3-dimensional organotypic cultures, we demonstrate that HPV16 E6 and E7 proteins alter the secretome of primary human keratinocytes resulting in local epithelial invasion. Mechanistically, absence of the IGF-binding protein 2 (IGFBP2) caused increases in IGFI/II signalling and through crosstalk with KGF/FGFR2b/AKT, cell invasion. Repression of IGFBP2 is mediated by histone deacetylation at the IGFBP2 promoter and was reversed by treatment with histone deacetylase (HDAC) inhibitors. Our in vitro findings were confirmed in 50 invasive cancers and 79 cervical intra-epithelial neoplastic lesions caused by HPV16 infection, where IGFBP2 levels were reduced with increasing disease severity. In summary, the loss of IGFBP2 is associated with progression of premalignant disease, and sensitises cells to pro-invasive IGF signalling, and together with stromal derived factors promotes epithelial invasion.


Assuntos
Células Epiteliais/metabolismo , Papillomavirus Humano 16 , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Células Cultivadas , Regulação para Baixo , Feminino , Papillomavirus Humano 16/genética , Humanos , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
4.
EMBO J ; 31(14): 3092-103, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22643222

RESUMO

Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions.


Assuntos
Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Proteína do Retinoblastoma/metabolismo , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína do Retinoblastoma/genética
5.
Cells Dev ; 179: 203923, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38670459

RESUMO

Kidney podocytes and endothelial cells assemble a complex and dynamic basement membrane that is essential for kidney filtration. Whilst many components of this specialised matrix are known, the influence of fluid flow on its assembly and organisation remains poorly understood. Using the coculture of podocytes and glomerular endothelial cells in a low-shear stress, high-flow bioreactor, we investigated the effect of laminar fluid flow on the composition and assembly of cell-derived matrix. With immunofluorescence and matrix image analysis we found flow-mediated remodelling of collagen IV. Using proteomic analysis of the cell-derived matrix we identified changes in both abundance and composition of matrix proteins under flow, including the collagen-modifying enzyme, prolyl 4-hydroxylase (P4HA1). To track collagen IV assembly, we used CRISPR-Cas9 to knock in the luminescent marker HiBiT to the endogenous COL4A2 gene in podocytes. With this system, we found that collagen IV was secreted and accumulated consistently under both static and flow conditions. However knockdown of P4HA1 in podocytes led to a reduction in the secretion of collagen IV and this was more pronounced under flow. Together, this work demonstrates the effect of fluid flow on the composition, modification, and organisation of kidney cell-derived matrix and provides an in vitro system for investigating flow-induced matrix alteration in the context of kidney development and disease.


Assuntos
Colágeno Tipo IV , Podócitos , Colágeno Tipo IV/metabolismo , Podócitos/metabolismo , Animais , Humanos , Matriz Extracelular/metabolismo , Rim/metabolismo , Células Endoteliais/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Técnicas de Cocultura , Proteômica , Camundongos
6.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766096

RESUMO

Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis. Notably, we differentiate the processes of collagen secretion and fibril assembly and identify the crucial involvement of endocytosis in regulating fibril formation. By employing Col1a1 knockout fibroblasts we demonstrate the incorporation of exogenous collagen into nucleation sites at the plasma membrane through these recycling mechanisms. Our study sheds light on the assembly process and its regulation in health and disease. Mass spectrometry data are available via ProteomeXchange with identifier PXD036794.

7.
Trauma Surg Acute Care Open ; 8(1): e000903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632529

RESUMO

Objectives: The trauma tertiary survey (TTS) is an essential part of the continued care for major trauma patients which is performed to ensure that all injuries have been identified and none have been overlooked during the patient's stay. Although the Advanced Trauma Life Support Course states a need for a tertiary survey, there is currently no standard for what this survey comprises. Methods: Using local consultant expert opinion and a literature search we identified a set of 32 TTS potential features that may be included within a TTS pro forma. Major trauma center (MTC) documents were requested from every MTC within the UK. 4 investigators sequentially interrogated each MTC TTS document looking for (1) presence of each feature and (2) how well the feature was represented on the document (0 to 4 Likert Scale). Any previously unidentified potential TTS features were noted and later reviewed for a second round of document analysis. Results: A total of 21 out of all 26 UK MTCs had a TTS pro forma document. A total of 68 possible features were identified. Respiratory and Abdominal assessment sections were the most frequently identified features (present in 90.4% of the TTS pro formas; n=19. Neck assessment and neurological assessment were included within 85.7% of the TTS pro formas (n=18). Further aspects identified for Round 2 analysis typically included features that were thought to be important but highly specific. For example, pregnancy test and DNACPR discussions were found in 1 MTC TTS each (4%). Conclusion: This article presents a review of the existing documents at 21 MTCs in the UK, identification of features used and proposes a gold standard TTS which can be used by any doctor to perform the tertiary survey and reduce the risk of missed injuries in trauma patients. Level of Evidence: 3.

8.
Matrix Biol ; 124: 8-22, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913834

RESUMO

The circadian clock in tendon regulates the daily rhythmic synthesis of collagen-I and the appearance and disappearance of small-diameter collagen fibrils in the extracellular matrix. How the fibrils are assembled and removed is not fully understood. Here, we first showed that the collagenase, membrane type I-matrix metalloproteinase (MT1-MMP, encoded by Mmp14), is regulated by the circadian clock in postnatal mouse tendon. Next, we generated tamoxifen-induced Col1a2-Cre-ERT2::Mmp14 KO mice (Mmp14 conditional knockout (CKO)). The CKO mice developed hind limb dorsiflexion and thickened tendons, which accumulated narrow-diameter collagen fibrils causing ultrastructural disorganization. Mass spectrometry of control tendons identified 1195 proteins of which 212 showed time-dependent abundance. In Mmp14 CKO mice 19 proteins had reversed temporal abundance and 176 proteins lost time dependency. Among these, the collagen crosslinking enzymes lysyl oxidase-like 1 (LOXL1) and lysyl hydroxylase 1 (LH1; encoded by Plod2) were elevated and had lost time-dependent regulation. High-pressure chromatography confirmed elevated levels of hydroxylysine aldehyde (pyridinoline) crosslinking of collagen in CKO tendons. As a result, collagen-I was refractory to extraction. We also showed that CRISPR-Cas9 deletion of Mmp14 from cultured fibroblasts resulted in loss of circadian clock rhythmicity of period 2 (PER2), and recombinant MT1-MMP was highly effective at cleaving soluble collagen-I but less effective at cleaving collagen pre-assembled into fibrils. In conclusion, our study shows that circadian clock-regulated Mmp14 controls the rhythmic synthesis of small diameter collagen fibrils, regulates collagen crosslinking, and its absence disrupts the circadian clock and matrisome in tendon fibroblasts.


Assuntos
Colágeno , Metaloproteinase 14 da Matriz , Animais , Camundongos , Ritmo Circadiano , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Homeostase , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo
9.
J Biol Chem ; 286(5): 3915-24, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21127042

RESUMO

Although members of the p63 family of transcription factors are known for their role in the development and differentiation of epithelial surfaces, their function in cancer is less clear. Here, we show that depletion of the ΔNp63α and ß isoforms, leaving only ΔNp63γ, results in epithelial to mesenchymal transition (EMT) in the normal breast cell line MCF10A. EMT can be rescued by the expression of the ΔNp63α isoform. We also show that ΔNp63γ expressed in a background where all the other ΔNp63 are knocked down causes EMT with an increase in TGFß-1, -2, and -3 and downstream effectors Smads2/3/4. In addition, a p63 binding site in intron 1 of TGFß was identified. Inhibition of the TGFß response with a specific inhibitor results in reversion of EMT in ΔNp63α- and ß-depleted cells. In summary, we show that p63 is involved in inhibiting EMT and reduction of certain p63 isoforms may be important in the development of epithelial cancers.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Smad/genética , Transativadores/fisiologia , Fator de Crescimento Transformador beta/genética , Proteínas Supressoras de Tumor/fisiologia , Sítios de Ligação , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Epiteliais e Glandulares/etiologia , Isoformas de Proteínas , Transativadores/metabolismo , Fatores de Transcrição , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
10.
J Cell Sci ; 123(Pt 21): 3718-26, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20940255

RESUMO

Although the retinoblastoma protein (Rb) functions as a checkpoint in the cell cycle, it also regulates differentiation. It has recently been shown that Rb is acetylated during differentiation; however, the role of this modification has not been identified. Depletion of Rb levels with short hairpin RNA resulted in inhibition of human keratinocyte differentiation, delayed cell cycle exit and allowed cell cycle re-entry. Restoration of Rb levels rescued defects in differentiation and cell cycle exit and re-entry; however, re-expression of Rb with the major acetylation sites mutated did not. During keratinocyte differentiation, acetylation of Rb is mediated by PCAF and it is further shown that PCAF acetyltransferase activity is also required for normal differentiation. The major acetylation sites in Rb are located within the nuclear localization sequence and, although mutation did not alter Rb localization in cycling cells, the mutant is mislocalized to the cytoplasm during differentiation. Studies indicate that acetylation is a mechanism for controlling Rb localization in human keratinocytes, with either reduction of the PCAF or exogenous expression of the deacetylase SIRT1, resulting in mislocalization of Rb. These findings identify PCAF-mediated acetylation of Rb as an event required to retain Rb within the nucleus during keratinocyte differentiation.


Assuntos
Núcleo Celular/metabolismo , Queratinócitos/metabolismo , Proteína do Retinoblastoma/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular/genética , Diferenciação Celular/genética , Clonagem Molecular , Ativação Enzimática/genética , Humanos , Queratinócitos/patologia , Mutagênese Sítio-Dirigida , Sinais Direcionadores de Proteínas/genética , RNA Interferente Pequeno/genética , Proteína do Retinoblastoma/genética , Sirtuína 1/genética , Transgenes/genética , Fatores de Transcrição de p300-CBP/genética
11.
bioRxiv ; 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33564760

RESUMO

COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, vaccine escape variants might arise leading to a re-emergence of COVID. In anticipation of such a scenario, the identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2- DOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in- line with reported proteinuria and liver damage in patients with COVID-19. We identified 35 drugs that reduced viral replication in Vero and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID.

12.
Circulation ; 120(7): 607-16, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19652091

RESUMO

BACKGROUND: Ras signaling regulates a number of important processes in the heart, including cell growth and hypertrophy. Although it is known that defective Ras signaling is associated with Noonan, Costello, and other syndromes that are characterized by tumor formation and cardiac hypertrophy, little is known about factors that may control it. Here we investigate the role of Ras effector Ras-association domain family 1 isoform A (RASSF1A) in regulating myocardial hypertrophy. METHODS AND RESULTS: A significant downregulation of RASSF1A expression was observed in hypertrophic mouse hearts, as well as in failing human hearts. To further investigate the role of RASSF1A in cardiac (patho)physiology, we used RASSF1A knock-out (RASSF1A(-)(/)(-)) mice and neonatal rat cardiomyocytes with adenoviral overexpression of RASSF1A. Ablation of RASSF1A in mice significantly enhanced the hypertrophic response to transverse aortic constriction (64.2% increase in heart weight/body weight ratio in RASSF1A(-)(/)(-) mice compared with 32.4% in wild type). Consistent with the in vivo data, overexpression of RASSF1A in cardiomyocytes markedly reduced the cellular hypertrophic response to phenylephrine stimulation. Analysis of molecular signaling events in isolated cardiomyocytes indicated that RASSF1A inhibited extracellular regulated kinase 1/2 activation, likely by blocking the binding of Raf1 to active Ras. CONCLUSIONS: Our data establish RASSF1A as a novel inhibitor of cardiac hypertrophy by modulating the extracellular regulated kinase 1/2 pathway.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proliferação de Células , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Adenoviridae/genética , Animais , Apoptose/fisiologia , Cardiomegalia/induzido quimicamente , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenilefrina/efeitos adversos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Supressoras de Tumor/genética , Vasoconstritores/efeitos adversos
13.
Cells ; 9(9)2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927811

RESUMO

The ability to quantitate a protein of interest temporally and spatially at subcellular resolution in living cells would generate new opportunities for research and drug discovery, but remains a major technical challenge. Here, we describe dynamic, high-sensitivity protein quantitation technique using NanoLuciferase (NLuc) tagging, which is effective across microscopy and multiwell platforms. Using collagen as a test protein, the CRISPR-Cas9-mediated introduction of nluc (encoding NLuc) into the Col1a2 locus enabled the simplification and miniaturisation of procollagen-I (PC-I) quantitation. Collagen was chosen because of the clinical interest in its dysregulation in cardiovascular and musculoskeletal disorders, and in fibrosis, which is a confounding factor in 45% of deaths, including those brought about by cancer. Collagen is also the cargo protein of choice for studying protein secretion because of its unusual shape and size. However, the use of overexpression promoters (which drowns out endogenous regulatory mechanisms) is often needed to achieve good signal/noise ratios in fluorescence microscopy of tagged collagen. We show that endogenous knock-in of NLuc, combined with its high brightness, negates the need to use exogenous promoters, preserves the circadian regulation of collagen synthesis and the responsiveness to TGF-ß, and enables time-lapse microscopy of intracellular transport compartments containing procollagen cargo. In conclusion, we demonstrate the utility of CRISPR-Cas9-mediated endogenous NLuc tagging to robustly quantitate extracellular, intracellular, and subcellular protein levels and localisation.


Assuntos
Sistemas CRISPR-Cas , Colágeno Tipo I , Animais , Colágeno Tipo I/análise , Colágeno Tipo I/metabolismo , Luminescência , Camundongos , Células NIH 3T3
14.
Nat Cell Biol ; 22(1): 74-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907414

RESUMO

Collagen is the most abundant secreted protein in vertebrates and persists throughout life without renewal. The permanency of collagen networks contrasts with both the continued synthesis of collagen throughout adulthood and the conventional transcriptional/translational homeostatic mechanisms that replace damaged proteins with new copies. Here, we show circadian clock regulation of endoplasmic reticulum-to-plasma membrane procollagen transport by the sequential rhythmic expression of SEC61, TANGO1, PDE4D and VPS33B. The result is nocturnal procollagen synthesis and daytime collagen fibril assembly in mice. Rhythmic collagen degradation by CTSK maintains collagen homeostasis. This circadian cycle of collagen synthesis and degradation affects a pool of newly synthesized collagen, while maintaining the persistent collagen network. Disabling the circadian clock causes abnormal collagen fibrils and collagen accumulation, which are reduced in vitro by the NR1D1 and CRY1/2 agonists SR9009 and KL001, respectively. In conclusion, our study has identified a circadian clock mechanism of protein homeostasis wherein a sacrificial pool of collagen maintains tissue function.


Assuntos
Relógios Circadianos/fisiologia , Colágeno/metabolismo , Homeostase/fisiologia , Via Secretória/fisiologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/efeitos dos fármacos , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Carbazóis/farmacologia , Colágeno/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Matriz Extracelular/metabolismo , Camundongos Transgênicos , Pirrolidinas/farmacologia , Canais de Translocação SEC/efeitos dos fármacos , Canais de Translocação SEC/metabolismo , Via Secretória/genética , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Proteínas de Transporte Vesicular/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo
15.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003551

RESUMO

The prostate cancer (PCa) field lacks clinically relevant, syngeneic mouse models which retain the tumour microenvironment observed in PCa patients. This study establishes a cell line from prostate tumour tissue derived from the Pten-/-/trp53-/- mouse, termed DVL3 which when subcutaneously implanted in immunocompetent C57BL/6 mice, forms tumours with distinct glandular morphology, strong cytokeratin 8 and androgen receptor expression, recapitulating high-risk localised human PCa. Compared to the commonly used TRAMP C1 model, generated with SV40 large T-antigen, DVL3 tumours are immunologically cold, with a lower proportion of CD8+ T-cells, and high proportion of immunosuppressive myeloid derived suppressor cells (MDSCs), thus resembling high-risk PCa. Furthermore, DVL3 tumours are responsive to fractionated RT, a standard treatment for localised and metastatic PCa, compared to the TRAMP C1 model. RNA-sequencing of irradiated DVL3 tumours identified upregulation of type-1 interferon and STING pathways, as well as transcripts associated with MDSCs. Upregulation of STING expression in tumour epithelium and the recruitment of MDSCs following irradiation was confirmed by immunohistochemistry. The DVL3 syngeneic model represents substantial progress in preclinical PCa modelling, displaying pathological, micro-environmental and treatment responses observed in molecular high-risk disease. Our study supports using this model for development and validation of treatments targeting PCa, especially novel immune therapeutic agents.

16.
Clin Cancer Res ; 24(16): 3917-3927, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29739791

RESUMO

Purpose: To investigate the regulation of epithelial-to-mesenchymal transition (EMT) in head and neck squamous cell carcinoma (HNSCC) and its importance in tumor invasion.Experimental Design: We use a three-dimensional invasive organotypic raft culture model of human foreskin keratinocytes expressing the E6/E7 genes of the human papilloma virus-16, coupled with bioinformatic and IHC analysis of patient samples to investigate the role played by EMT in invasion and identify effectors and upstream regulatory pathways.Results: We identify SNAI2 (Slug) as a critical effector of EMT-activated downstream of TP63 overexpression in HNSCC. Splice-form-specific depletion and rescue experiments further identify the ΔNp63γ isoform as both necessary and sufficient to activate the SRC signaling axis and SNAI2-mediated EMT and invasion. Moreover, elevated SRC levels are associated with poor outcome in patients with HNSCC in The Cancer Genome Atlas dataset. Importantly, the effects on EMT and invasions and SNAI2 expression can be reversed by genetic or pharmacologic inhibition of SRC.Conclusions: Overexpression of ΔNp63γ modulates cell invasion by inducing targetable SRC-Slug-evoked EMT in HNSCC, which can be reversed by inhibitors of the SRC signaling. Clin Cancer Res; 24(16); 3917-27. ©2018 AACR.


Assuntos
Fatores de Transcrição da Família Snail/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Quinases da Família src/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Humanos , Queratinócitos/virologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas Oncogênicas Virais/genética , Isoformas de Proteínas/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
17.
Oncotarget ; 9(79): 34889-34910, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30405882

RESUMO

Pimozide, an antipsychotic drug of the diphenylbutylpiperidine class, has been shown to suppress cell growth of breast cancer cells in vitro. In this study we further explore the inhibitory effects of this molecule in cancer cells. We found that Pimozide inhibited cell proliferation in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells and A549 lung cancer cells. Furthermore, we found that Pimozide also promoted apoptosis as demonstrated by cell cycle arrest and induction of double-strand DNA breaks but did not result in any effect in the non-transformed MCF10A breast cell line. In order to shed new lights into the molecular pathways affected by Pimozide, we show that Pimozide downregulated RAN GTPase and AKT at both protein and mRNA levels and inhibited the AKT signaling pathway in MDA-MB-231 breast cancer cells. Pimozide also inhibited the epithelial mesenchymal transition and cell migration and downregulated the expression of MMPs. Administration of Pimozide showed a potent in vivo antitumor activity in MDA-MB-231 xenograft animal model and reduced the number of lung metastases by blocking vascular endothelial growth factor receptor 2. Furthermore, Pimozide inhibited myofibroblast formation as evaluated by the reduction in α-smooth muscle actin containing cells. Thus, Pimozide might inhibit tumor development by suppressing angiogenesis and by paracrine stimulation provided by host reactive stromal cells. These results demonstrate a novel in vitro and in vivo antitumor activity of Pimozide against breast and lung cancer cells and provide the proof of concept for a putative Pimozide as a novel approach for cancer therapy.

18.
Oncotarget ; 8(10): 16202-16219, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26001294

RESUMO

Using microarray information from oro-pharyngeal data sets and results from primary human foreskin keratinocytes (HFK) expressing Human Papilloma Virus (HPV)-16 E6/E7 proteins, we show that p63 expression regulates signalling molecules which initiate cell migration such as Src and focal adhesion kinase (FAK) and induce invasion in 3D-organotypic rafts; a phenotype that can be reversed by depletion of p63. Knockdown of Src or FAK in the invasive cells restored focal adhesion protein paxillin at cell periphery and impaired the cell migration. In addition, specific inhibition of FAK (PF573228) or Src (dasatinib) activities mitigated invasion and attenuated the expression/activity of matrix metalloproteinase 14 (MMP14), a pivotal MMP in the MMP activation cascade. Expression of constitutively active Src in non-invasive HFK expressing E6/E7 proteins upregulated the activity of c-Jun and MMP14, and induced invasion in rafts. Depletion of Src, FAK or AKT in the invasive cells normalised the expression/activity of c-Jun and MMP14, thus implicating the Src-FAK/AKT/AP-1 signalling in MMP14-mediated extra-cellular matrix remodelling. Up-regulation of Src, AP-1, MMP14 and p63 expression was confirmed in oro-pharyngeal cancer. Since p63 transcriptionally regulated expression of many of the genes in this signalling pathway, it suggests that it has a central role in cancer progression.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Queratinócitos/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Quinases da Família src/metabolismo , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Dasatinibe/farmacologia , Imunofluorescência , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/genética , Prepúcio do Pênis/citologia , Humanos , Queratinócitos/citologia , Masculino , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Proteínas Oncogênicas Virais/genética , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/virologia , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Quinolonas/farmacologia , Interferência de RNA , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sulfonas/farmacologia , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética
19.
Mutat Res Rev Mutat Res ; 772: 67-77, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528691

RESUMO

Human papillomaviruses (HPV) infect and replicate in stratified epithelium at cutaneous and mucosal surfaces. The proliferation and maintenance of keratinocytes, the cells which make up this epithelium, are controlled by a number of growth factor receptors such as the keratinocyte growth factor receptor (KGFR, also called fibroblast growth factor receptor 2b (FGFR2b)), the epithelial growth factor receptor (EGFR) and the insulin-like growth factor receptors 1 and 2 (IGF1R and IGF2R). In this review, we will delineate the mutation, gene transcription, translation and processing of the IGF axis within HPV associated cancers. The IGFs are key for developmental and postnatal growth of almost all tissues; we explore whether this crucial axis has been hijacked by HPV.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/virologia , Papillomaviridae/patogenicidade , Somatomedinas/genética , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/virologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor IGF Tipo 1 , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Somatomedinas/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-25774149

RESUMO

The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA