Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511204

RESUMO

Medicinal signaling cells (MSC) exhibit distinct molecular signatures and biological abilities, depending on the type of tissue they originate from. Recently, we isolated and described a new population of stem cells residing in the coronary corium, equine hoof progenitor cells (HPCs), which could be a new promising cell pool for the treatment of laminitis. Therefore, this study aimed to compare native populations of HPCs to well-established adipose-derived stem cells (ASCs) in standard culture conditions and in a pro-inflammatory milieu to mimic a laminitis condition. ASCs and HPCs were either cultured in standard conditions or subjected to priming with a cytokines cocktail mixture. The cells were harvested and analyzed for expression of key markers for phenotype, mitochondrial metabolism, oxidative stress, apoptosis, and immunomodulation using RT-qPCR. The morphology and migration were assessed based on fluorescent staining. Microcapillary cytometry analyses were performed to assess the distribution in the cell cycle, mitochondrial membrane potential, and oxidative stress. Native HPCs exhibited a similar morphology to ASCs, but a different phenotype. The HPCs possessed lower migration capacity and distinct distribution across cell cycle phases. Native HPCs were characterized by different mitochondrial dynamics and oxidative stress levels. Under standard culture conditions, HPCs displayed different expression patterns of apoptotic and immunomodulatory markers than ASCs, as well as distinct miRNA expression. Interestingly, after priming with the cytokines cocktail mixture, HPCs exhibited different mitochondrial dynamics than ASCs; however, the apoptosis and immunomodulatory marker expression was similar in both populations. Native ASCs and HPCs exhibited different baseline expressions of markers involved in mitochondrial dynamics, the oxidative stress response, apoptosis and inflammation. When exposed to a pro-inflammatory microenvironment, ASCs and HPCs differed in the expression of mitochondrial condition markers and chosen miRNAs.


Assuntos
Casco e Garras , Células-Tronco Mesenquimais , Animais , Cavalos , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Citocinas/metabolismo
2.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545342

RESUMO

In the recent years, the prevalence of metabolic conditions such as type 2 Diabetes (T2D) and metabolic syndrome (MetS) raises. The impairment of liver metabolism resulting in hepatic insulin resistance is a common symptom and a critical step in the development of T2D and MetS. The liver plays a crucial role in maintaining glucose homeostasis. Hepatic insulin resistance can often be identified before other symptoms arrive; therefore, establishing methods for its early diagnosis would allow for the implementation of proper treatment in patients before the disease develops. Non-coding RNAs such as miRNAs (micro-RNA) and lncRNAs (long-non-coding RNA) are being recognized as promising novel biomarkers and therapeutic targets-especially due to their regulatory function. The dysregulation of miRNA and lncRNA activity has been reported in the livers of insulin-resistant patients. Many of those transcripts are involved in the regulation of the hepatic insulin signaling cascade. Furthermore, for several miRNAs (miR-802, miR-499-5p, and miR-122) and lncRNAs (H19 imprinted maternally expressed transcript (H19), maternally expressed gene 3 (MEG3), and metastasis associated lung adenocarcinoma transcript 1 (MALAT1)), circulating levels were altered in patients with prediabetes, T2D, and MetS. In the course of this review, the role of the aforementioned ncRNAs in hepatic insulin signaling cascade, as well as their potential application in diagnostics, is discussed. Overall, circulating ncRNAs are precise indicators of hepatic insulin resistance in the development of metabolic diseases and could be applied as early diagnostic and/or therapeutic tools in conditions associated with insulin resistance.


Assuntos
Biomarcadores/sangue , Resistência à Insulina/genética , Fígado/metabolismo , RNA não Traduzido/sangue , Biomarcadores/análise , Humanos , Insulina/genética , Insulina/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética
3.
Stem Cell Res Ther ; 14(1): 54, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978118

RESUMO

BACKGROUND: Progression of senile osteoporosis is associated with deteriorated regenerative potential of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). According to the recent results, the senescent phenotype of osteoporotic cells strongly correlates with impaired regulation of mitochondria dynamics. Moreover, due to the ageing of population and growing osteoporosis incidence, more efficient methods concerning BMSCs rejuvenation are intensely investigated. Recently, miR-21-5p was reported to play a vital role in bone turnover, but its therapeutic mechanisms in progenitor cells delivered from senile osteoporotic patients remain unclear. Therefore, the goal of this paper was to investigate for the first time the regenerative potential of miR-21-5p in the process of mitochondrial network regulation and stemness restoration using the unique model of BMSCs isolated from senile osteoporotic SAM/P6 mice model. METHODS: BMSCs were isolated from healthy BALB/c and osteoporotic SAM/P6 mice. We analysed the impact of miR-21-5p on the expression of crucial markers related to cells' viability, mitochondria reconstruction and autophagy progression. Further, we established the expression of markers vital for bone homeostasis, as well as defined the composition of extracellular matrix in osteogenic cultures. The regenerative potential of miR-21 in vivo was also investigated using a critical-size cranial defect model by computed microtomography and SEM-EDX imaging. RESULTS: MiR-21 upregulation improved cells' viability and drove mitochondria dynamics in osteoporotic BMSCs evidenced by the intensification of fission processes. Simultaneously, miR-21 enhanced the osteogenic differentiation of BMSCs evidenced by increased expression of Runx-2 but downregulated Trap, as well as improved calcification of extracellular matrix. Importantly, the analyses using the critical-size cranial defect model indicated on a greater ratio of newly formed tissue after miR-21 application, as well as upregulated content of calcium and phosphorus within the defect site. CONCLUSIONS: Our results demonstrate that miR-21-5p regulates the fission and fusion processes of mitochondria and facilitates the stemness restoration of senile osteoporotic BMSCs. At the same time, it enhances the expression of RUNX-2, while reduces TRAP accumulation in the cells with deteriorated phenotype. Therefore, miR-21-5p may bring a novel molecular strategy for senile osteoporosis diagnostics and treatment.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Animais , Camundongos , Envelhecimento/genética , Células da Medula Óssea , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Osteogênese/genética , Osteoporose/metabolismo , Fenótipo
4.
Front Endocrinol (Lausanne) ; 14: 1149610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020593

RESUMO

Background: Equine metabolic syndrome (EMS) is a multifactorial pathology gathering insulin resistance, low-grade inflammation and past or chronic laminitis. Among the several molecular mechanisms underlying EMS pathogenesis, increased negative insulin signalling regulation mediated by protein tyrosine phosphatase 1 B (PTP1B) has emerged as a critical axis in the development of liver insulin resistance and general metabolic distress associated to increased ER stress, inflammation and disrupted autophagy. Thus, the use of PTP1B selective inhibitors such as MSI-1436 might be considered as a golden therapeutic tool for the proper management of EMS and associated conditions. Therefore, the present investigation aimed at verifying the clinical efficacy of MSI-1436 systemic administration on liver metabolic balance, insulin sensitivity and inflammatory status in EMS affected horses. Moreover, the impact of MSI-1436 treatment on liver autophagy machinery and associated ER stress in liver tissue has been analysed. Methods: Liver explants isolated from healthy and EMS horses have been treated with MSI-1436 prior to gene and protein expression analysis of main markers mediating ER stress, mitophagy and autophagy. Furthermore, EMS horses have been intravenously treated with a single dose of MSI-1436, and evaluated for their metabolic and inflammatory status. Results: Clinical application of MSI-1436 to EMS horses restored proper adiponectin levels and attenuated the typical hyperinsulinemia and hyperglycemia. Moreover, administration of MSI-1436 further reduced the circulating levels of key pro-inflammatory mediators including IL-1ß, TNF-α and TGF-ß and triggered the Tregs cells activation. At the molecular level, PTP1B inhibition resulted in a noticeable mitigation of liver ER stress, improvement of mitochondrial dynamics and consequently, a regulation of autophagic response. Similarly, short-term ex vivo treatment of EMS liver explants with trodusquemine (MSI-1436) substantially enhanced autophagy by upregulating the levels of HSC70 and Beclin-1 at both mRNA and protein level. Moreover, the PTP1B inhibitor potentiated mitophagy and associated expression of MFN2 and PINK1. Interestingly, inhibition of PTP1B resulted in potent attenuation of ER stress key mediators' expression namely, CHOP, ATF6, HSPA5 and XBP1. Conclusion: Presented findings shed for the first time promising new insights in the development of an MSI-1436-based therapy for proper equine metabolic syndrome intervention and may additionally find potential translational application to human metabolic syndrome treatment.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Humanos , Autofagia , Inibidores Enzimáticos , Cavalos , Inflamação , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Estresse do Retículo Endoplasmático
5.
Cells ; 11(9)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563743

RESUMO

The study aimed to investigate the influence of obesity on cellular features of equine endometrial progenitor cells (Eca EPCs), including viability, proliferation capacity, mitochondrial metabolism, and oxidative homeostasis. Eca EPCs derived from non-obese (non-OB) and obese (OB) mares were characterized by cellular phenotype and multipotency. Obesity-induced changes in the activity of Eca EPCs include the decline of their proliferative activity, clonogenic potential, mitochondrial metabolism, and enhanced oxidative stress. Eca EPCs isolated from obese mares were characterized by an increased occurrence of early apoptosis, loss of mitochondrial dynamics, and senescence-associated phenotype. Attenuated metabolism of Eca EPCs OB was related to increased expression of pro-apoptotic markers (CASP9, BAX, P53, P21), enhanced expression of OPN, PI3K, and AKT, simultaneously with decreased signaling stabilizing cellular homeostasis (including mitofusin, SIRT1, FOXP3). Obesity alters functional features and the self-renewal potential of endometrial progenitor cells. The impaired cytophysiology of progenitor cells from obese endometrium predicts lower regenerative capacity if used as autologous transplants.


Assuntos
Células Progenitoras Endoteliais , Animais , Endométrio/metabolismo , Células Progenitoras Endoteliais/metabolismo , Feminino , Cavalos , Obesidade/metabolismo , Fenótipo , Células-Tronco/metabolismo
6.
Stem Cell Rev Rep ; 17(4): 1478-1485, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34037924

RESUMO

Laminitis is a life threating, extremely painful and frequently recurrent disease of horses which affects hoof structure. It results from the disruption of blood flow to the laminae, contributing to laminitis and in severe separation of bone from the hoof capsule. Still, the pathophysiology of the disease remains unclear, mainly due to its complexity. In the light of the presented data, in the extremally difficult process of tissue structure restoration after disruption, a novel type of progenitor cells may be involved. Herein, we isolated and performed the initial characterization of stem progenitor cells isolated from the coronary corium of the equine feet (HPC). Phenotype of the cells was investigated with flow cytometry and RT-qPCR revealing the presence of nestin, CD29, and expression of progenitor cell markers including SOX2, OCT4, NANOG and K14. Morphology of HPC was investigated with light, confocal and SEM microscopes. Cultured cells were characterised by spindle shaped morphology, eccentric nuclei, elongated mitochondria, and high proliferation rate. Plasticity and multilineage differentiation potential was confirmed by specific staining and gene expression analysis. We conclude that HPC exhibit in vitro expansion and plasticity similar to mesenchymal stem cells, which can be isolated from the equine foot, and may be directly involved in the pathogenesis and recovery of laminitis. Obtained results are of importance to the field of laminitis treatment as determining the repairing cell populations could contribute to the discovery of novel therapeutic targets and agents including and cell-based therapies for affected animals.


Assuntos
Doenças do Pé , Casco e Garras , Doenças dos Cavalos , Células-Tronco , Animais , Doenças do Pé/terapia , Doenças do Pé/veterinária , Casco e Garras/citologia , Doenças dos Cavalos/genética , Doenças dos Cavalos/terapia , Cavalos , Integrina beta1 , Queratinas , Nestina , Células-Tronco/citologia
7.
Int J Nanomedicine ; 16: 6049-6065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511905

RESUMO

PURPOSE: Healing of osteoporotic defects is challenging and requires innovative approaches to elicit molecular mechanisms promoting osteoblasts-osteoclasts coupling and bone homeostasis. METHODS: Cytocompatibility and biocompatibility of previously characterised nanocomposites, i.e Ca5(PO4)3OH/Fe3O4 (later called nHAp/IO) functionalised with microRNAs (nHAp/IO@miR-21/124) was tested. In vitro studies were performed using a direct co-culture system of MC3T3-E1 pre-osteoblast and 4B12 pre-osteoclasts. The analysis included determination of nanocomposite influence on cultures morphology (confocal imaging), viability and metabolic activity (Alamar Blue assay). Pro-osteogenic signals were identified at mRNA, miRNA and protein level with RT-qPCR, Western blotting and immunocytochemistry. Biocompatibility of biomaterials was tested using bilateral cranial defect performed on a senescence-accelerated mouse model, ie SAM/P6 and Balb/c. The effect of biomaterial on the process of bone healing was monitored using microcomputed tomography. RESULTS: The nanocomposites promoted survival and metabolism of bone cells, as well as enhanced functional differentiation of pre-osteoblasts MC3T3-E1 in co-cultures with pre-osteoclasts. Differentiation of MC3T3-E1 driven by nHAp/IO@miR-21/124 nanocomposite was manifested by improved extracellular matrix differentiation and up-regulation of pro-osteogenic transcripts, ie late osteogenesis markers. The nanocomposite triggered bone healing in a cranial defect model in SAM/P6 mice and was replaced by functional bone in Balb/c mice. CONCLUSION: This study demonstrates that the novel nanocomposite nHAp/IO can serve as a platform for therapeutic miRNA delivery. Obtained nanocomposite elicit pro-osteogenic signals, decreasing osteoclasts differentiation, simultaneously improving osteoblasts metabolism and their transition toward pre-osteocytes and bone mineralisation. The proposed scaffold can be an effective interface for in situ regeneration of osteoporotic bone, especially in elderly patients.


Assuntos
MicroRNAs , Osteoporose , Idoso , Animais , Diferenciação Celular , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos , MicroRNAs/genética , Osteoblastos , Osteogênese , Osteopontina/genética , Microtomografia por Raio-X
8.
Cells ; 9(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093031

RESUMO

MiR-21 is being gradually more and more recognized as a molecule regulating bone tissue homeostasis. However, its function is not fully understood due to the dual role of miR-21 on bone-forming and bone-resorbing cells. In this study, we investigated the impact of miR-21 inhibition on pre-osteoblastic cells differentiation and paracrine signaling towards pre-osteoclasts using indirect co-culture model of mouse pre-osteoblast (MC3T3) and pre-osteoclast (4B12) cell lines. The inhibition of miR-21 in MC3T3 cells (MC3T3inh21) modulated expression of genes encoding osteogenic markers including collagen type I (Coll-1), osteocalcin (Ocl), osteopontin (Opn), and runt-related transcription factor 2 (Runx-2). Inhibition of miR-21 in osteogenic cultures of MC3T3 also inflected the synthesis of OPN protein which is essential for proper mineralization of extracellular matrix (ECM) and anchoring osteoclasts to the bones. Furthermore, it was shown that in osteoblasts miR-21 regulates expression of factors that are vital for survival of pre-osteoclast, such as receptor activator of nuclear factor κB ligand (RANKL). The pre-osteoclast cultured with MC3T3inh21 cells was characterized by lowered expression of several markers associated with osteoclasts' differentiation, foremost tartrate-resistant acid phosphatase (Trap) but also receptor activator of nuclear factor-κB ligand (Rank), cathepsin K (Ctsk), carbonic anhydrase II (CaII), and matrix metalloproteinase (Mmp-9). Collectively, our data indicate that the inhibition of miR-21 in MC3T3 cells impairs the differentiation and ECM mineralization as well as influences paracrine signaling leading to decreased viability of pre-osteoclasts.


Assuntos
MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Comunicação Parácrina/genética , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/metabolismo , Camundongos , MicroRNAs/genética , Osteopontina/genética , Osteopontina/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo , Transfecção
9.
Int J Nanomedicine ; 15: 1595-1610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210554

RESUMO

INTRODUCTION: The development of the field of biomaterials engineering is rapid. Various bioactive coatings are created to improve the biocompatibility of substrates used for bone regeneration, which includes formulation of thin zirconia coatings with pro-osteogenic properties. The aim of this study was to assess the biological properties of ZrO2 thin films grown by Atomic Layer Deposition (ALD) technology (ZrO2 ALD). METHODOLOGY: The cytocompatibility of the obtained layers was analysed using the mice pre-osteoblastic cell line (MC3T3) characterized by decreased expression of microRNA 21-5p (miR-21-5p) in order to evaluate the potential pro-osteogenic properties of the coatings. The in vitro experiments were designed to determine the effect of ZrO2 ALD coatings on cell morphology (confocal microscope), proliferative activity (cell cycle analysis) and metabolism, reflected by mitochondrial membrane potential (cytometric-based measurement). Additionally, the influence of layers on the expression of genes associated with cell survival and osteogenesis was studied using RT-qPCR. The following genes were investigated: B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), p53 and p21, as well as osteogenic markers, i.e. collagen type 1 (Coll-1), osteopontin (Opn), osteocalcin (Ocl) and runt-related transcription factor 2 (Runx-2). The levels of microRNA (miRNA/miR) involved in the regulation of osteogenic genes were determined, including miR-7, miR-21, miR-124 and miR-223. RESULTS: The analysis revealed that the obtained coatings are cytocompatible and may increase the metabolism of pre-osteoblast, which was correlated with increased mitochondrial membrane potential and extensive development of the mitochondrial network. The obtained coatings affected the viability and proliferative status of cells, reducing the population of actively dividing cells. However, in cultures propagated on ZrO2 ALD coatings, the up-regulation of genes essential for bone metabolism was noted. DISCUSSION: The data obtained indicate that ZrO2 coatings created using the ALD method may have pro-osteogenic properties and may improve the metabolism of bone precursor cells. Given the above, further development of ZrO2 ALD layers is essential in terms of their potential clinical application in bone regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Zircônio/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação da Expressão Gênica , Teste de Materiais , Camundongos , MicroRNAs/genética , Nanotecnologia/métodos , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Regulação para Cima , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA