Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(23): e115008, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964598

RESUMO

The main goals and challenges for the life science communities in the Open Science framework are to increase reuse and sustainability of data resources, software tools, and workflows, especially in large-scale data-driven research and computational analyses. Here, we present key findings, procedures, effective measures and recommendations for generating and establishing sustainable life science resources based on the collaborative, cross-disciplinary work done within the EOSC-Life (European Open Science Cloud for Life Sciences) consortium. Bringing together 13 European life science research infrastructures, it has laid the foundation for an open, digital space to support biological and medical research. Using lessons learned from 27 selected projects, we describe the organisational, technical, financial and legal/ethical challenges that represent the main barriers to sustainability in the life sciences. We show how EOSC-Life provides a model for sustainable data management according to FAIR (findability, accessibility, interoperability, and reusability) principles, including solutions for sensitive- and industry-related resources, by means of cross-disciplinary training and best practices sharing. Finally, we illustrate how data harmonisation and collaborative work facilitate interoperability of tools, data, solutions and lead to a better understanding of concepts, semantics and functionalities in the life sciences.


Assuntos
Disciplinas das Ciências Biológicas , Pesquisa Biomédica , Software , Fluxo de Trabalho
2.
Remote Sens Environ ; 280: 113198, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36090616

RESUMO

Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under shortterm, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions.

3.
Photosynth Res ; 140(2): 221-233, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30357678

RESUMO

Photosynthetic phenotyping requires quick characterization of dynamic traits when measuring large plant numbers in a fluctuating environment. Here, we evaluated the light-induced fluorescence transient (LIFT) method for its capacity to yield rapidly fluorometric parameters from 0.6 m distance. The close approximation of LIFT to conventional chlorophyll fluorescence (ChlF) parameters is shown under controlled conditions in spinach leaves and isolated thylakoids when electron transport was impaired by anoxic conditions or chemical inhibitors. The ChlF rise from minimum fluorescence (Fo) to maximum fluorescence induced by fast repetition rate (Fm-FRR) flashes was dominated by reduction of the primary electron acceptor in photosystem II (QA). The subsequent reoxidation of QA- was quantified using the relaxation of ChlF in 0.65 ms (Fr1) and 120 ms (Fr2) phases. Reoxidation efficiency of QA- (Fr1/Fv, where Fv = Fm-FRR - Fo) decreased when electron transport was impaired, while quantum efficiency of photosystem II (Fv/Fm) showed often no significant effect. ChlF relaxations of the LIFT were similar to an independent other method. Under increasing light intensities, Fr2'/Fq' (where Fr2' and Fq' represent Fr2 and Fv in the light-adapted state, respectively) was hardly affected, whereas the operating efficiency of photosystem II (Fq'/Fm') decreased due to non-photochemical quenching. Fm-FRR was significantly lower than the ChlF maximum induced by multiple turnover (Fm-MT) flashes. However, the resulting Fv/Fm and Fq'/Fm' from both flashes were highly correlated. The LIFT method complements Fv/Fm with information about efficiency of electron transport. Measurements in situ and from a distance facilitate application in high-throughput and automated phenotyping.


Assuntos
Transporte de Elétrons , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/fisiologia , Fluorescência , Cinética , Luz , Folhas de Planta/metabolismo , Spinacia oleracea/efeitos da radiação , Tilacoides/metabolismo
5.
New Phytol ; 212(4): 838-855, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27783423

RESUMO

I. 839 II. 839 III. 841 IV. 845 V. 847 VI. 848 VII. 849 VIII. 851 851 852 References 852 Appendix A1 854 SUMMARY: Plant biologists often grow plants in growth chambers or glasshouses with the ultimate aim to understand or improve plant performance in the field. What is often overlooked is how results from controlled conditions translate back to field situations. A meta-analysis showed that lab-grown plants had faster growth rates, higher nitrogen concentrations and different morphology. They remained smaller, however, because the lab plants had grown for a much shorter time. We compared glasshouse and growth chamber conditions with those in the field and found that the ratio between the daily amount of light and daily temperature (photothermal ratio) was consistently lower under controlled conditions. This may strongly affect a plant's source : sink ratio and hence its overall morphology and physiology. Plants in the field also grow at higher plant densities. A second meta-analysis showed that a doubling in density leads on average to 34% smaller plants with strong negative effects on tiller or side-shoot formation but little effect on plant height. We found the r2 between lab and field phenotypic data to be rather modest (0.26). Based on these insights, we discuss various alternatives to facilitate the translation from lab results to the field, including several options to apply growth regimes closer to field conditions.


Assuntos
Agricultura , Desenvolvimento Vegetal , Genótipo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento
6.
J Exp Bot ; 66(18): 5519-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26071535

RESUMO

The process of domestication has led to dramatic morphological and physiological changes in crop species due to adaptation to cultivation and to the needs of farmers. To investigate the phenotypic architecture of shoot- and root-related traits and quantify the impact of primary and secondary domestication, we examined a collection of 36 wheat genotypes under optimal and nitrogen-starvation conditions. These represented three taxa that correspond to key steps in the recent evolution of tetraploid wheat (i.e. wild emmer, emmer, and durum wheat). Overall, nitrogen starvation reduced the shoot growth of all genotypes, while it induced the opposite effect on root traits, quantified using the automated phenotyping platform GROWSCREEN-Rhizo. We observed an overall increase in all of the shoot and root growth traits from wild emmer to durum wheat, while emmer was generally very similar to wild emmer but intermediate between these two subspecies. While the differences in phenotypic diversity due to the effects of primary domestication were not significant, the secondary domestication transition from emmer to durum wheat was marked by a large and significant decrease in the coefficient of additive genetic variation. In particular, this reduction was very strong under the optimal condition and less intense under nitrogen starvation. Moreover, although under the optimal condition both root and shoot traits showed significantly reduced diversity due to secondary domestication, under nitrogen starvation the reduced diversity was significant only for shoot traits. Overall, a considerable amount of phenotypic variation was observed in wild emmer and emmer, which could be exploited for the development of pre-breeding strategies.


Assuntos
Fenótipo , Triticum/genética , Fertilizantes/análise , Nitrogênio/metabolismo , Melhoramento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Tetraploidia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
7.
Ann Bot ; 115(4): 555-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25538116

RESUMO

BACKGROUND AND AIMS: Leaf gas exchange is influenced by stomatal size, density, distribution between the leaf adaxial and abaxial sides, as well as by pore dimensions. This study aims to quantify which of these traits mainly underlie genetic differences in operating stomatal conductance (gs) and addresses possible links between anatomical traits and regulation of pore width. METHODS: Stomatal responsiveness to desiccation, gs-related anatomical traits of each leaf side and estimated gs (based on these traits) were determined for 54 introgression lines (ILs) generated by introgressing segments of Solanum pennelli into the S. lycopersicum 'M82'. A quantitative trait locus (QTL) analysis for stomatal traits was also performed. KEY RESULTS: A wide genetic variation in stomatal responsiveness to desiccation was observed, a large part of which was explained by stomatal length. Operating gs ranged over a factor of five between ILs. The pore area per stomatal area varied 8-fold among ILs (2-16 %), and was the main determinant of differences in operating gs between ILs. Operating gs was primarily positioned on the abaxial surface (60-83 %), due to higher abaxial stomatal density and, secondarily, to larger abaxial pore area. An analysis revealed 64 QTLs for stomatal traits in the ILs, most of which were in the direction of S. pennellii. CONCLUSIONS: The data indicate that operating and maximum gs of non-stressed leaves maintained under stable conditions deviate considerably (by 45-91 %), because stomatal size inadequately reflects operating pore area (R(2) = 0·46). Furthermore, it was found that variation between ILs in both stomatal sensitivity to desiccation and operating gs is associated with features of individual stoma. In contrast, genotypic variation in gs partitioning depends on the distribution of stomata between the leaf adaxial and abaxial epidermis.


Assuntos
Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Solanum/fisiologia , Dessecação , Variação Genética , Hibridização Genética , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Modelos Biológicos , Fenótipo , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/anatomia & histologia , Solanum/anatomia & histologia , Solanum/genética
8.
Plant Cell ; 23(12): 4208-20, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22186372

RESUMO

We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.


Assuntos
Fotossíntese , Folhas de Planta/fisiologia , Zea mays/fisiologia , Clorofila/análise , Clorofila/química , Análise por Conglomerados , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Malatos/química , Metaboloma , Oxigênio/química , Folhas de Planta/química , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ácido Pirúvico/química , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Transcriptoma , Zea mays/química , Zea mays/genética
9.
Proc Natl Acad Sci U S A ; 107(30): 13372-7, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624981

RESUMO

The terrestrial hydrological cycle is strongly influenced by transpiration--water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model. Specifically, we argue that the steady-state water potential of the epidermis in the intact leaf is controlled by the difference between the radiation-controlled rate of water vapor production in the leaf interior and the rate of transpiration. Any difference between these two potentially large fluxes is made up by evaporation from (or condensation on) the epidermis, causing its water potential to pivot around this balance point. Previous work established that stomata in isolated epidermal strips respond by opening with increasing (and closing with decreasing) water potential. Thus, stomatal conductance and transpiration rate should increase when there is condensation on (and decrease when there is evaporation from) the epidermis, thus tending to maintain homeostasis of epidermal water potential. We use a model to show that such a mechanism would have control properties similar to those observed with leaves. This hypothesis provides a plausible explanation for the regulation of leaf and canopy transpiration by the radiation load and provides a unique framework for studies of the regulation of stomatal conductance by CO(2) and other factors.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Dióxido de Carbono/metabolismo , Helianthus/metabolismo , Helianthus/fisiologia , Luz , Modelos Biológicos , Nerium/metabolismo , Nerium/fisiologia , Fotossíntese/efeitos da radiação , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Árvores/metabolismo , Água/metabolismo , Xanthium/metabolismo , Xanthium/fisiologia
10.
Front Plant Sci ; 14: 1235175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731976

RESUMO

Mission-oriented governance of research focuses on inspirational, yet attainable goals and targets the sustainable development goals through innovation pathways. We disentangle its implications for plant breeding research and thus impacting the sustainability transformation of agricultural systems, as it requires improved crop varieties and management practices. Speedy success in plant breeding is vital to lower the use of chemical fertilizers and pesticides, increase crop resilience to climate stresses and reduce postharvest losses. A key question is how this success may come about? So far plant breeding research has ignored wider social systems feedbacks, but governance also failed to deliver a set of systemic breeding goals providing directionality and organization to research policy of the same. To address these challenges, we propose a heuristic illustrating the core elements needed for governing plant breeding research: Genetics, Environment, Management and Social system (GxExMxS) are the core elements for defining directions for future breeding. We illustrate this based on historic cases in context of current developments in plant phenotyping technologies and derive implications for governing research infrastructures and breeding programs. As part of mission-oriented governance we deem long-term investments into human resources and experimental set-ups for agricultural systems necessary to ensure a symbiotic relationship for private and public breeding actors and recommend fostering collaboration between social and natural sciences for working towards transdisciplinary collaboration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA