Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36017799

RESUMO

Signals from the endothelium play a pivotal role in pancreatic lineage commitment. As such, the fate of the epithelial cells relies heavily on the spatiotemporal recruitment of the endothelial cells to the embryonic pancreas. Although it is known that VEGFA secreted by the epithelium recruits the endothelial cells to the specific domains within the developing pancreas, the mechanism that controls the timing of such recruitment is poorly understood. Here, we have assessed the role of focal adhesion kinase (FAK) in mouse pancreatic development based on our observation that the presence of the enzymatically active form of FAK (pFAK) in the epithelial cells is inversely correlated with vessel recruitment. To study the role of FAK in the pancreas, we conditionally deleted the gene encoding focal adhesion kinase in the developing mouse pancreas. We found that homozygous deletion of Fak (Ptk2) during embryogenesis resulted in ectopic epithelial expression of VEGFA, abnormal endothelial recruitment and a delay in endocrine and acinar cell differentiation. The heterozygous mutants were born with no pancreatic phenotype but displayed gradual acinar atrophy due to cell polarity defects in exocrine cells. Together, our findings imply a role for FAK in controlling the timing of pancreatic lineage commitment and/or differentiation in the embryonic pancreas by preventing endothelial recruitment to the embryonic pancreatic epithelium.


Assuntos
Células Endoteliais , Animais , Diferenciação Celular/genética , Proteína-Tirosina Quinases de Adesão Focal , Homozigoto , Camundongos , Deleção de Sequência
2.
Nat Immunol ; 11(3): 225-31, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20139986

RESUMO

Autoreactive CD4(+) T cells are involved in the pathogenesis of many autoimmune diseases, but the antigens that stimulate their responses have been difficult to identify and in most cases are not well defined. In the nonobese diabetic (NOD) mouse model of type 1 diabetes, we have identified the peptide WE14 from chromogranin A (ChgA) as the antigen for highly diabetogenic CD4(+) T cell clones. Peptide truncation and extension analysis shows that WE14 bound to the NOD mouse major histocompatibility complex class II molecule I-A(g7) in an atypical manner, occupying only the carboxy-terminal half of the I-A(g7) peptide-binding groove. This finding extends the list of T cell antigens in type 1 diabetes and supports the idea that autoreactive T cells respond to unusually presented self peptides.


Assuntos
Autoantígenos/imunologia , Cromogranina A/imunologia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Fragmentos de Peptídeos/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Epitopos/imunologia , Antígenos HLA-A , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Dados de Sequência Molecular
3.
Curr Diab Rep ; 21(3): 9, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547977

RESUMO

PURPOSE OF REVIEW: Type 1 diabetes (T1D) can be managed by insulin replacement, but it is still associated with an increased risk of microvascular/cardiovascular complications. There is considerable interest in antigen-specific approaches for treating T1D due to their potential for a favorable risk-benefit ratio relative to non-specific immune-based treatments. Here we review recent antigen-specific tolerance approaches using auto-antigen and/or immunomodulatory agents in NOD mice and provide insight into seemingly contradictory findings. RECENT FINDINGS: Although delivery of auto-antigen alone can prevent T1D in NOD mice, this approach may be prone to inconsistent results and has not demonstrated an ability to reverse established T1D. Conversely, several approaches that promote presentation of auto-antigen in a tolerogenic context through cell/tissue targeting, delivery system properties, or the delivery of immunomodulatory agents have had success in reversing recent-onset T1D in NOD mice. While initial auto-antigen based approaches were unable to substantially influence T1D progression clinically, recent antigen-specific approaches have promising potential.


Assuntos
Diabetes Mellitus Tipo 1 , Tolerância Imunológica , Animais , Antígenos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Insulina , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Reguladores
4.
Am J Pathol ; 189(7): 1413-1422, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31054988

RESUMO

Obesity is a major risk factor for type 2 diabetes because of chronic hepatic inflammation and resultant insulin resistance. Hepatocyte growth factor (HGF) is responsible for resetting hepatic homeostasis after injury following activation by urokinase-type plasminogen activator (u-PA; encoded by the PLAU gene). Plasminogen activator inhibitor type-1 (PAI-1; encoded by the SERPINE1 gene), a u-PA inhibitor and antifibrinolytic agent, is often elevated in obesity and is linked to cardiovascular events. We hypothesized that, in addition to its role in preventing fibrinolysis, elevated PAI-1 inhibits HGF's activation by u-PA and the resultant anti-inflammatory and hepatoprotective properties. Wild-type and PAI-1 knockout (KO) mice on a high-fat diet both became significantly heavier than lean controls; however, the obese KO mice demonstrated improved glucose metabolism compared with wild-type mice. Obese KO mice also exhibited an increase in conversion of latent single-chain HGF to active two-chain HGF, coinciding with an increase in the phosphorylation of the HGF receptor (HGFR or MET, encoded by the MET gene), as well as dampened inflammation. These results strongly suggest that, in addition to its other functions, PAI-mediated inhibition of HGF activation prohibits the resolution of inflammation in the context of obesity-induced type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Animais , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Inibidor 1 de Ativador de Plasminogênio/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
5.
FASEB J ; 33(1): 1330-1346, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113881

RESUMO

The incidence and prevalence of inflammatory bowel disease (IBD) are increasing worldwide. IBD is known to be multifactorial, but inflammatory signaling within the intestinal epithelium and a subsequent failure of the intestinal epithelial barrier have been shown to play essential roles in disease pathogenesis. CaMKIV is a multifunctional protein kinase associated with inflammation and cell cycle regulation. CaMKIV has been extensively studied in autoimmune diseases, but a role in idiopathic intestinal inflammation has not been described. In this study, active CaMKIV was highly expressed within the intestinal epithelium of humans with ulcerative colitis and wild-type (WT) mice with experimental induced colitis. Clinical disease severity directly correlates with CaMKIV activation, as does expression of proinflammatory cytokines and histologic features of colitis. In WT mice, CaMKIV activation is associated with increases in expression of 2 cell cycle proarrest signals: p53 and p21. Cell cycle arrest inhibits proliferation of the intestinal epithelium and ultimately results in compromised intestinal epithelial barrier integrity, further perpetuating intestinal inflammation during experimental colitis. Using a CaMKIV null mutant mouse, we demonstrate that a loss of CaMKIV protects against murine DSS colitis. Small molecules targeting CaMKIV activation may provide therapeutic benefit for patients with IBD.-Cunningham, K. E., Novak, E. A., Vincent, G., Siow, V. S., Griffith, B. D., Ranganathan, S., Rosengart, M. R., Piganelli, J. D., Mollen, K. P. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) activation contributes to the pathogenesis of experimental colitis via inhibition of intestinal epithelial cell proliferation.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células , Colite/enzimologia , Colite/patologia , Mucosa Intestinal/patologia , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Colite/induzido quimicamente , Colite Ulcerativa/enzimologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sulfato de Dextrana/toxicidade , Ativação Enzimática , Humanos , Mucosa Intestinal/enzimologia , Camundongos , Camundongos Knockout , Transdução de Sinais
6.
Am J Transplant ; 18(8): 1879-1889, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29464912

RESUMO

Islet transplantation has become a well-established therapy for select patients with type 1 diabetes. Viability and engraftment can be compromised by the generation of oxidative stress encountered during isolation and culture. We evaluated whether the administration of BMX-001 (MnTnBuOE-2-PyP5+ [Mn(III) meso-tetrakis-(N-b-butoxyethylpyridinium-2-yl)porphyrin]) and its earlier derivative, BMX-010 (MnTE-2-PyP [Mn(III) meso-tetrakis-(N-methylpyridinium-2-yl)porphyrin]) could improve islet function and engraftment outcomes. Long-term culture of human islets with BMX-001, but not BMX-010, exhibited preserved in vitro viability. Murine islets isolated and cultured for 24 hours with 34 µmol/L BMX-001 exhibited improved insulin secretion (n = 3 isolations, P < .05) in response to glucose relative to control islets. In addition, 34 µmol/L BMX-001-supplemented murine islets exhibited significantly reduced apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling, compared with nontreated control islets (P < .05). Murine syngeneic islets transplanted under the kidney capsule at a marginal dose of 150 islets revealed 58% of 34 µmol/L BMX-001-treated islet recipients became euglycemic (n = 11 of 19) compared with 19% of nontreated control islet recipients (n = 3 of 19, P < .05). Of murine recipients receiving a marginal dose of human islets cultured with 34 µmol/L BMX-001, 92% (n = 12 of 13) achieved euglycemia compared with 57% of control recipients (n = 8 of 14, P = .11). These results demonstrate that the administration of BMX-001 enhances in vitro viability and augments murine marginal islet mass engraftment.


Assuntos
Apoptose/efeitos dos fármacos , Materiais Biomiméticos/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Ilhotas Pancreáticas/efeitos dos fármacos , Metaloporfirinas/farmacologia , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glucose/farmacologia , Sobrevivência de Enxerto , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Superóxido Dismutase/metabolismo
7.
J Biol Chem ; 290(25): 15581-15594, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25944898

RESUMO

Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice.


Assuntos
Gorduras na Dieta/efeitos adversos , Fatores de Transcrição Forkhead/metabolismo , Gluconeogênese/efeitos dos fármacos , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Fígado/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Células Cultivadas , Gorduras na Dieta/farmacologia , Fatores de Transcrição Forkhead/genética , Gluconeogênese/genética , Hiperglicemia/induzido quimicamente , Hiperglicemia/genética , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/genética , Hiperinsulinismo/patologia , Hiperinsulinismo/prevenção & controle , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Receptores CCR2/genética , Receptores CCR2/metabolismo
8.
J Autoimmun ; 72: 33-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27173406

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by pancreatic ß cell destruction induced by islet reactive T cells that have escaped central tolerance. Many physiological and environmental triggers associated with T1D result in ß cell endoplasmic reticulum (ER) stress and dysfunction, increasing the potential for abnormal post-translational modification (PTM) of proteins. We hypothesized that ß cell ER stress induced by environmental and physiological conditions generates abnormally-modified proteins for the T1D autoimmune response. To test this hypothesis we exposed the murine CD4(+) diabetogenic BDC2.5 T cell clone to murine islets in which ER stress had been induced chemically (Thapsigargin). The BDC2.5 T cell IFNγ response to these cells was significantly increased compared to non-treated islets. This ß cell ER stress increased activity of the calcium (Ca(2+))-dependent PTM enzyme tissue transglutaminase 2 (Tgase2), which was necessary for full stress-dependent immunogenicity. Indeed, BDC2.5 T cells responded more strongly to their antigen after its modification by Tgase2. Finally, exposure of non-antigenic murine insulinomas to chemical ER stress in vitro or physiological ER stress in vivo caused increased ER stress and Tgase2 activity, culminating in higher BDC2.5 responses. Thus, ß cell ER stress induced by chemical and physiological triggers leads to ß cell immunogenicity through Ca(2+)-dependent PTM. These findings elucidate a mechanism of how ß cell proteins are modified and become immunogenic, and reveal a novel opportunity for preventing ß cell recognition by autoreactive T cells.


Assuntos
Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Estresse do Retículo Endoplasmático/imunologia , Células Secretoras de Insulina/imunologia , Sequência de Aminoácidos , Animais , Autoantígenos/genética , Autoantígenos/imunologia , Autoimunidade/genética , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Cálcio/imunologia , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Cromogranina A/genética , Cromogranina A/imunologia , Cromogranina A/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Imunológicos , Proteína 2 Glutamina gama-Glutamiltransferase , Processamento de Proteína Pós-Traducional/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem , Transglutaminases/genética , Transglutaminases/imunologia , Transglutaminases/metabolismo
9.
Mol Med ; 20: 612-24, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25517228

RESUMO

Pathophysiological conditions that lead to the release of the prototypic damage-associated molecular pattern molecule high mobility group box 1 (HMGB1) also result in activation of poly(ADP-ribose) polymerase 1 (PARP1; now known as ADP-ribosyl transferase 1 [ARTD1]). Persistent activation of PARP1 promotes energy failure and cell death. The role of poly(ADP-ribosyl)ation in HMGB1 release has been explored previously; however, PARP1 is a versatile enzyme and performs several other functions including cross-talk with another nicotinamide adenine dinucleotide- (NAD(+)) dependent member of the Class III histone deacetylases (HDACs), sirtuin-1 (SIRT1). Previously, it has been shown that the hyperacetylation of HMGB1 is a seminal event prior to its secretion, a process that also is dependent on HDACs. Therefore, in this study, we seek to determine if PARP1 inhibition alters LPS-mediated HMGB1 hyperacetylation and subsequent secretion due to its effect on SIRT1. We demonstrate in an in vitro model that LPS treatment leads to hyperacetylated HMGB1 with concomitant reduction in nuclear HDAC activity. Treatment with PARP1 inhibitors mitigates the LPS-mediated reduction in nuclear HDAC activity and decreases HMGB1 acetylation. By utilizing an NAD(+)-based mechanism, PARP1 inhibition increases the activity of SIRT1. Consequently, there is an increased nuclear retention and decreased extracellular secretion of HMGB1. We also demonstrate that PARP1 physically interacts with SIRT1. Further confirmation of this data was obtained in a murine model of sepsis, that is, administration of PJ-34, a specific PARP1 inhibitor, led to decreased serum HMGB1 concentrations in mice subjected to cecal ligation and puncture (CLP) as compared with untreated mice. In conclusion, our study provides new insights in understanding the molecular mechanisms of HMGB1 secretion in sepsis.


Assuntos
Proteína HMGB1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sepse/metabolismo , Sirtuína 1/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Fibroblastos , Proteína HMGB1/genética , Histona Desacetilase 1/metabolismo , Humanos , Isoquinolinas/farmacologia , Lipopolissacarídeos , Macrófagos , Camundongos Transgênicos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , RNA Mensageiro/metabolismo , Sepse/sangue
10.
Gastroenterology ; 147(5): 1106-18.e11, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25128759

RESUMO

BACKGROUND & AIMS: Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. METHODS: We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. RESULTS: Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for ß-cell generation. CONCLUSIONS: Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis.


Assuntos
Células Acinares/metabolismo , Comunicação Celular , Linhagem da Célula , Proliferação de Células , Microambiente Celular , Células Secretoras de Insulina/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Regeneração , Células Acinares/patologia , Fatores Etários , Animais , Anticorpos/toxicidade , Biomarcadores/metabolismo , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Toxina Diftérica/toxicidade , Modelos Animais de Doenças , Imunoconjugados/toxicidade , Células Secretoras de Insulina/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fenótipo , Proteínas Inativadoras de Ribossomos Tipo 1/toxicidade , Saporinas , Transdução de Sinais
11.
Curr Diab Rep ; 15(11): 90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26370701

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease in which progressive loss of self-tolerance, evidenced by accumulation of auto-antibodies and auto-reactive T cells that recognize diverse self-proteins, leads to immune-mediated destruction of pancreatic beta cells and loss of insulin secretion. In this review, we discuss antigens and epitopes in T1D and the role that post-translational modifications play in circumventing tolerance mechanisms and increasing antigenic diversity. Emerging data suggest that, analogous to other autoimmune diseases such as rheumatoid arthritis and celiac disease, enzymatically modified epitopes are preferentially recognized in T1D. Modifying enzymes such as peptidyl deiminases and tissue transglutaminase are activated in response to beta cell stress, providing a mechanistic link between post-translational modification and interactions with the environment. Although studies of such responses in the at-risk population have been limited, current data suggests that breakdown in tolerance through post-translational modification represents an important checkpoint in the development of T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Epitopos de Linfócito T/imunologia , Animais , Autoimunidade , Antígenos HLA/imunologia , Humanos , Processamento de Proteína Pós-Traducional , Linfócitos T/imunologia
12.
Mol Metab ; 88: 101998, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069156

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW: This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS: This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/imunologia , Animais , Autofagia/imunologia , Autoimunidade , Tolerância Imunológica
13.
Artigo em Inglês | MEDLINE | ID: mdl-38951031

RESUMO

In this review, we explore the complex interplay between the immune system and pancreatic ß cells in the context of type 1 diabetes (T1D). While T1D is predominantly considered a T-cell-mediated autoimmune disease, the inability of human leukocyte antigen (HLA)-risk alleles alone to explain disease development suggests a role for ß cells in initiating and/or propagating disease. This review delves into the vulnerability of ß cells, emphasizing their susceptibility to endoplasmic reticulum (ER) stress and protein modifications, which may give rise to neoantigens. Additionally, we discuss the role of viral infections as contributors to T1D onset, and of genetic factors with dual impacts on the immune system and ß cells. A greater understanding of the interplay between environmental triggers, autoimmunity, and the ß cell will not only lead to insight as to why the islet ß cells are specifically targeted by the immune system in T1D but may also reveal potential novel therapeutic interventions.

14.
bioRxiv ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39345410

RESUMO

Aims/hypothesis: Surviving beta cells in type 1 diabetes respond to inflammation by upregulating programmed death-ligand 1 (PD-L1) to engage immune cell programmed death-1 (PD-1) and limit destruction by self-reactive immune cells. Extracellular vesicles (EVs) and their cargo can serve as biomarkers of beta cell health and contribute to islet intercellular communication. We hypothesized that the inflammatory milieu of type 1 diabetes increases PD-L1 in beta cell EV cargo and that EV PD-L1 may protect beta cells against immune-mediated cell death. Methods: Beta cell lines and human islets were treated with proinflammatory cytokines to model the proinflammatory type 1 diabetes microenvironment. EVs were isolated using ultracentrifugation or size exclusion chromatography and analysed via immunoblot, flow cytometry, and ELISA. EV PD-L1: PD-1 binding was assessed using a competitive binding assay and in vitro functional assays testing the ability of EV PD-L1 to inhibit NOD CD8 T cells. Plasma EV and soluble PD-L1 were assayed in plasma of individuals with islet autoantibody positivity (Ab+) or recent-onset type 1 diabetes and compared to non-diabetic controls. Results: PD-L1 protein colocalized with tetraspanin-associated proteins intracellularly and was detected on the surface of beta cell EVs. 24-h IFN-α or IFN-γ treatment induced a two-fold increase in EV PD-L1 cargo without a corresponding increase in number of EVs. IFN exposure predominantly increased PD-L1 expression on the surface of beta cell EVs and beta cell EV PD-L1 showed a dose-dependent capacity to bind PD-1. Functional experiments demonstrated specific effects of beta cell EV PD-L1 to suppress proliferation and cytotoxicity of murine CD8 T cells. Plasma EV PD-L1 levels were increased in islet Ab+ individuals, particularly in those with single Ab+, Additionally, in from individuals with either Ab+ or type 1 diabetes, but not in controls, plasma EV PD-L1 positively correlated with circulating C-peptide, suggesting that higher EV-PD-L1 could be protective for residual beta cell function. Conclusions/interpretation: IFN exposure increases PD-L1 on the beta cell EV surface. Beta cell EV PD-L1 binds PD1 and inhibits CD8 T cell proliferation and cytotoxicity. Circulating EV PD-L1 is higher in islet autoantibody positive patients compared to controls. Circulating EV PD-L1 levels correlate with residual C-peptide at different stages in type 1 diabetes progression. These findings suggest that EV PD-L1 could contribute to heterogeneity in type 1 diabetes progression and residual beta cell function and raise the possibility that EV PD-L1 could be exploited as a means to inhibit immune-mediated beta cell death.

15.
Nat Commun ; 15(1): 3740, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702347

RESUMO

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Assuntos
Células Acinares , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animais , Células Secretoras de Insulina/metabolismo , Camundongos , Células Acinares/metabolismo , Masculino , Insulina/metabolismo , Transdiferenciação Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Ilhotas Pancreáticas/metabolismo
16.
Front Immunol ; 14: 1290058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164129

RESUMO

Type 1 diabetes (T1D) affects three million Americans, with 80 new people diagnosed each day. T1D is currently uncurable and there is an urgent need to develop additional drug candidates to achieve the prevention of T1D. We propose AZD6738 (ATRi), an orally available drug currently in phases I and II of clinical trials for various cancers, as a novel candidate to prevent T1D. Based on previously reported findings of ATRi inducing cell death in rapidly proliferating T cells, we hypothesized that this drug would specifically affect self-antigen activated diabetogenic T cells. These cells, if left unchecked, could otherwise lead to the destruction of pancreatic ß cells, contributing to the development of T1D. This work demonstrates that increasing the duration of ATRi treatment provides extended protection against T1D onset. Remarkably, 5-week ATRi treatment prevented T1D in a robust adoptive transfer mouse model. Furthermore, the splenocytes of animals that received 5-week ATRi treatment did not transfer immune-mediated diabetes, while the splenocytes from control animal transferred the disease in 10 days. This work shows that ATRi prevents T1D by specifically inducing cell death in self-antigen activated, highly proliferative diabetogenic T cells through the induction of DNA damage, resulting in the inhibition of IFNγ production and proliferation. These findings support the consideration of repurposing ATRi for T1D prevention.


Assuntos
Antineoplásicos , Diabetes Mellitus Tipo 1 , Neoplasias , Animais , Camundongos , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/prevenção & controle , Indóis , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autoantígenos
17.
Front Immunol ; 14: 1231700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744380

RESUMO

Introduction: We have previously demonstrated that a pathologic downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α) within the intestinal epithelium contributes to the pathogenesis of inflammatory bowel disease (IBD). However, the mechanism underlying downregulation of PGC1α expression and activity during IBD is not yet clear. Methods: Mice (male; C57Bl/6, Villincre/+;Pgc1afl/fl mice, and Pgc1afl/fl) were subjected to experimental colitis and treated with nicotinamide riboside. Western blot, high-resolution respirometry, nicotinamide adenine dinucleotide (NAD+) quantification, and immunoprecipitation were used to in this study. Results: We demonstrate a significant depletion in the NAD+ levels within the intestinal epithelium of mice undergoing experimental colitis, as well as humans with ulcerative colitis. While we found no decrease in the levels of NAD+-synthesizing enzymes within the intestinal epithelium of mice undergoing experimental colitis, we did find an increase in the mRNA level, as well as the enzymatic activity, of the NAD+-consuming enzyme poly(ADP-ribose) polymerase-1 (PARP1). Treatment of mice undergoing experimental colitis with an NAD+ precursor reduced the severity of colitis, restored mitochondrial function, and increased active PGC1α levels; however, NAD+ repletion did not benefit transgenic mice that lack PGC1α within the intestinal epithelium, suggesting that the therapeutic effects require an intact PGC1α axis. Discussion: Our results emphasize the importance of PGC1α expression to both mitochondrial health and homeostasis within the intestinal epithelium and suggest a novel therapeutic approach for disease management. These findings also provide a mechanistic basis for clinical trials of nicotinamide riboside in IBD patients.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Masculino , Animais , Camundongos , NAD , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Transgênicos , Mitocôndrias , Inflamação
18.
Am J Physiol Lung Cell Mol Physiol ; 302(1): L160-6, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22003088

RESUMO

The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is abundant in the lung and is known to limit inflammation and fibrosis following numerous pulmonary insults. Previous studies have reported a loss of full-length EC-SOD from the pulmonary parenchyma with accumulation of proteolyzed EC-SOD in the airspace after an interstitial lung injury. However, following airspace only inflammation, EC-SOD accumulates in the airspace without a loss from the interstitium, suggesting this antioxidant may be released from an extrapulmonary source. Because leukocytes are known to express EC-SOD and are prevalent in the bronchoalveolar lavage fluid (BALF) after injury, it was hypothesized that these cells may transport and release EC-SOD into airspaces. To test this hypothesis, C57BL/6 wild-type and EC-SOD knockout mice were irradiated and transplanted with bone marrow from either wild-type mice or EC-SOD knockout mice. Bone marrow chimeric mice were then intratracheally treated with asbestos and killed 3 and 7 days later. At both 3 and 7 days following asbestos injury, mice without pulmonary EC-SOD expression but with EC-SOD in infiltrating and resident leukocytes did not have detectable levels of EC-SOD in the airspaces. In addition, leukocyte-derived EC-SOD did not significantly lessen inflammation or early stage fibrosis that resulted from asbestos injury in the lungs. Although it is not influential in the asbestos-induced interstitial lung injury model, EC-SOD is still known to be present in leukocytes and may play an influential role in attenuating pneumonias and other inflammatory diseases.


Assuntos
Amianto/administração & dosagem , Leucócitos/enzimologia , Lesão Pulmonar/enzimologia , Pulmão/enzimologia , Superóxido Dismutase/metabolismo , Animais , Amianto/efeitos adversos , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Espaço Extracelular/enzimologia , Sequestradores de Radicais Livres/metabolismo , Inflamação/enzimologia , Pulmão/patologia , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/fisiopatologia
19.
Am J Pathol ; 178(6): 2752-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21641397

RESUMO

Extracellular superoxide dismutase (EC-SOD) is abundant in the lung and limits inflammation and injury in response to many pulmonary insults. To test the hypothesis that EC-SOD has an important role in bacterial infections, wild-type and EC-SOD knockout (KO) mice were infected with Escherichia coli to induce pneumonia. Although mice in the EC-SOD KO group demonstrated greater pulmonary inflammation than did wild-type mice, there was less clearance of bacteria from their lungs after infection. Macrophages and neutrophils express EC-SOD; however, its function and subcellular localization in these inflammatory cells is unclear. In the present study, immunogold electron microscopy revealed EC-SOD in membrane-bound vesicles of phagocytes. These findings suggest that inflammatory cell EC-SOD may have a role in antibacterial defense. To test this hypothesis, phagocytes from wild-type and EC-SOD KO mice were evaluated. Although macrophages lacking EC-SOD produced more reactive oxygen species than did cells expressing EC-SOD after stimulation, they demonstrated significantly impaired phagocytosis and killing of bacteria. Overall, this suggests that EC-SOD facilitates clearance of bacteria and limits inflammation in response to infection by promoting bacterial phagocytosis.


Assuntos
Escherichia coli/citologia , Espaço Extracelular/enzimologia , Macrófagos/citologia , Macrófagos/enzimologia , Viabilidade Microbiana , Fagocitose , Superóxido Dismutase/metabolismo , Animais , Humanos , Inflamação/microbiologia , Inflamação/patologia , Espaço Intracelular/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxidantes/metabolismo , Pneumonia/microbiologia , Pneumonia/patologia , Superóxido Dismutase/ultraestrutura
20.
Amino Acids ; 42(1): 95-113, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20473774

RESUMO

The most efficacious Mn(III) porphyrinic (MnPs) scavengers of reactive species have positive charges close to the Mn site, whereby they afford thermodynamic and electrostatic facilitation for the reaction with negatively charged species such as O (2) (•-) and ONOO(-). Those are Mn(III) meso tetrakis(N-alkylpyridinium-2-yl)porphyrins, more specifically MnTE-2-PyP(5+) (AEOL10113) and MnTnHex-2-PyP(5+) (where alkyls are ethyl and n-hexyl, respectively), and their imidazolium analog, MnTDE-2-ImP(5+) (AEOL10150, Mn(III) meso tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin). The efficacy of MnPs in vivo is determined not only by the compound antioxidant potency, but also by its bioavailability. The former is greatly affected by the lipophilicity, size, structure, and overall shape of the compound. These porphyrins have the ability to both eliminate reactive oxygen species and impact the progression of oxidative stress-dependent signaling events. This will effectively lead to the regulation of redox-dependent transcription factors and the suppression of secondary inflammatory- and oxidative stress-mediated immune responses. We have reported on the inhibition of major transcription factors HIF-1α, AP-1, SP-1, and NF-κB by Mn porphyrins. While the prevailing mechanistic view of the suppression of transcription factors activation is via antioxidative action (presumably in cytosol), the pro-oxidative action of MnPs in suppressing NF-κB activation in nucleus has been substantiated. The magnitude of the effect is dependent upon the electrostatic (porphyrin charges) and thermodynamic factors (porphyrin redox ability). The pro-oxidative action of MnPs has been suggested to contribute at least in part to the in vitro anticancer action of MnTE-2-PyP(5+) in the presence of ascorbate, and in vivo when combined with chemotherapy of lymphoma. Given the remarkable therapeutic potential of metalloporphyrins, future studies are warranted to further our understanding of in vivo action/s of Mn porphyrins, particularly with respect to their subcellular distribution.


Assuntos
Manganês/metabolismo , Metaloporfirinas/metabolismo , Metaloporfirinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Animais , Humanos , Manganês/química , Metaloporfirinas/química , Oxirredução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA