Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Int J Mol Sci ; 21(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218381

RESUMO

Currently, there is a lack of ultrasensitive diagnostic tool to detect some diseases such as ischemic stroke, thereby impacting effective and efficient intervention for such diseases at an embryonic stage. In addition to the lack of proper detection of the neurological diseases, there is also a challenge in the treatment of these diseases. Carbon nanotubes have a potential to be employed in solving the theragnostic challenges in those diseases. In this study, carbon nanotubes were successfully synthesized for potential application in the detection and treatment of the neurological diseases such as ischemic stroke. Vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) were purified with HCl, carboxylated with H2SO4:HNO3 (3:1) and acylated with SOCl2 for use in potential targeting studies and for the design of a carbon-based electrode for possible application in the diagnosis of neurological diseases, including ischemic stroke. MWCNTs were washed, extracted from the filter membranes and dried in a vacuum oven at 60 °C for 24 h prior to functionalization and PEGylation. CNTs were characterized by SEM, TEM, OCA, DLS, CV and EIS. The HCl-treated CNT obtained showed an internal diameter, outer diameter and thickness of 8 nm, 34 nm and 75 µm, while these parameters for the H2SO4-HNO3-treated CNT were 8 nm, 23 nm and 41µm, respectively. PEGylated CNT demonstrated zeta potential, polydispersive index and particle size distribution of 6 mV, 0.41 and 98 nm, respectively. VA-MWCNTs from quartz tube were successfully purified, carboxylated, acylated and PEGylated for potential functionalization for use in targeting studies. For designing the carbon-based electrode, VA-MWCNTs on silicon wafer were successfully incorporated into epoxy resin for diagnostic applications. Functionalized MWCNTs were nontoxic towards PC-12 neuronal cells. In conclusion, vertically super-aligned MWCNTs have been successfully synthesized and functionalized for possible theragnostic biomedical applications in neurological disorders such as ischemic stroke.


Assuntos
Nanotubos de Carbono , Eletrodos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/ultraestrutura , Oxirredução , Tamanho da Partícula
2.
Molecules ; 25(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003358

RESUMO

Synthesis of a novel theranostic molecule for targeted cancer intervention. A reaction between curcumin and lawsone was carried out to yield the novel curcumin naphthoquinone (CurNQ) molecule (2,2'-((((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl) bis(2-methoxy-4,1-phenylene))bis(oxy))bis(naphthalene-1,4-dione). CurNQ's structure was elucidated and was fully characterized. CurNQ was demonstrated to have pH specific solubility, its saturation solubility increased from 11.15 µM at pH 7.4 to 20.7 µM at pH 6.8. This pH responsivity allows for cancer targeting (Warburg effect). Moreover, CurNQ displayed intrinsic fluorescence, thus enabling imaging and detection applications. In vitro cytotoxicity assays demonstrated the chemotherapeutic properties of CurNQ as CurNQ reduced cell viability to below 50% in OVCAR-5 and SKOV3 ovarian cancer cell lines. CurNQ is a novel theranostic molecule for potential targeted cancer detection and treatment.


Assuntos
Curcumina/uso terapêutico , Naftoquinonas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Camundongos , Células NIH 3T3 , Naftoquinonas/química , Naftoquinonas/farmacologia , Neoplasias Ovarianas/patologia , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Fluorescência
3.
Molecules ; 25(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935794

RESUMO

Chitosan can form interpolymer complexes (IPCs) with anionic polymers to form biomedical platforms (BMPs) for wound dressing/healing applications. This has resulted in its application in various BMPs such as gauze, nano/microparticles, hydrogels, scaffolds, and films. Notably, wound healing has been highlighted as a noteworthy application due to the remarkable physical, chemical, and mechanical properties enabled though the interaction of these polyelectrolytes. The interaction of chitosan and anionic polymers can improve the properties and performance of BMPs. To this end, the approaches employed in fabricating wound dressings was evaluated for their effect on the property-performance factors contributing to BMP suitability in wound dressing. The use of chitosan in wound dressing applications has had much attention due to its compatible biological properties. Recent advancement includes the control of the degree of crosslinking and incorporation of bioactives in an attempt to enhance the physicochemical and physicomechanical properties of wound dressing BMPs. A critical issue with polyelectrolyte-based BMPs is that their effective translation to wound dressing platforms has yet to be realised due to the unmet challenges faced when mimicking the complex and dynamic wound environment. Novel BMPs stemming from the IPCs of chitosan are discussed in this review to offer new insight into the tailoring of physical, chemical, and mechanical properties via fabrication approaches to develop effective wound dressing candidates. These BMPs may pave the way to new therapeutic developments for improved patient outcomes.


Assuntos
Bandagens , Materiais Biocompatíveis , Quitosana , Polímeros , Animais , Materiais Biocompatíveis/química , Engenharia Biomédica/métodos , Engenharia Biomédica/normas , Fenômenos Químicos , Quitosana/química , Humanos , Hidrogéis , Fenômenos Mecânicos , Polímeros/química , Alicerces Teciduais , Cicatrização
4.
Molecules ; 25(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664504

RESUMO

Tankyrase enzymes (TNKS), a core part of the canonical Wnt pathway, are a promising target in the search for potential anti-cancer agents. Although several hundreds of the TNKS inhibitors are currently known, identification of their novel chemotypes attracts considerable interest. In this study, the molecular docking and machine learning-based virtual screening techniques combined with the physico-chemical and ADMET (absorption, distribution, metabolism, excretion, toxicity) profile prediction and molecular dynamics simulations were applied to a subset of the ZINC database containing about 1.7 M commercially available compounds. Out of seven candidate compounds biologically evaluated in vitro for their inhibition of the TNKS2 enzyme using immunochemical assay, two compounds have shown a decent level of inhibitory activity with the IC50 values of less than 10 nM and 10 µM. Relatively simple scores based on molecular docking or MM-PBSA (molecular mechanics, Poisson-Boltzmann, surface area) methods proved unsuitable for predicting the effect of structural modification or for accurate ranking of the compounds based on their binding energies. On the other hand, the molecular dynamics simulations and Free Energy Perturbation (FEP) calculations allowed us to further decipher the structure-activity relationships and retrospectively analyze the docking-based virtual screening performance. This approach can be applied at the subsequent lead optimization stages.


Assuntos
Inibidores Enzimáticos , Tanquirases , Sítios de Ligação , Descoberta de Drogas , Inibidores Enzimáticos/química , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tanquirases/antagonistas & inibidores , Tanquirases/química
5.
Pharm Dev Technol ; 25(3): 267-280, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31744408

RESUMO

Mortality rate of patients infected with HIV-1 has been significantly reduced by using HAART. However, the virus to date has not been eradicated. Transmission of HIV-1 infection through sexual intercourse remains an ongoing challenge, with increased risk of infection occurring in women. Interestingly, ARV drugs can be chemically linked with lipids to produce lipid-drug conjugates (LDCs). This alters pharmacokinetic properties of ARV drugs and thereby resulting in improved effectiveness. Although LDCs can be administered without a delivery carrier, they are usually incorporated into suitable delivery systems such as lipid nanoparticles, polymeric nanoparticles, micelles, liposomes, emulsions, and carbon nanotubes. Given that LDCs have the potential to improve oral bioavailability, lipophilicity, toxicity, and drug targeting, it is of our great interest to review strategies of lipid-drug conjugation together with their delivery systems for enhanced antiretroviral efficacy.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Administração Oral , Animais , Fármacos Anti-HIV/efeitos adversos , Fármacos Anti-HIV/farmacocinética , Disponibilidade Biológica , Infecções por HIV/tratamento farmacológico , Humanos , Lipídeos/química
6.
J Chem Inf Model ; 59(8): 3519-3532, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31276400

RESUMO

Molecular dynamics simulations provide valuable insights into the behavior of molecular systems. Extending the recent trend of using machine learning techniques to predict physicochemical properties from molecular dynamics data, we propose to consider the trajectories as multidimensional time series represented by 2D tensors containing the ligand-protein interaction descriptor values for each time step. Similar in structure to the time series encountered in modern approaches for signal, speech, and natural language processing, these time series can be directly analyzed using long short-term memory (LSTM) recurrent neural networks or convolutional neural networks (CNNs). The predictive regression models for the ligand-protein affinity were built for a subset of the PDBbind v.2017 database and applied to inhibitors of tankyrase, an enzyme of the poly(ADP-ribose)-polymerase (PARP) family that can be used in the treatment of colorectal cancer. As an additional test set, a subset of the Community Structure-Activity Resource (CSAR) data set was used. For comparison, the random forest and simple neural network models based on the crystal pose or the trajectory-averaged descriptors were used, as well as the commonly employed docking and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) scores. Convolutional neural networks based on the 2D tensors of ligand-protein interaction descriptors for short (2 ns) trajectories provide the best accuracy and predictive power, reaching the Spearman rank correlation coefficient of 0.73 and Pearson correlation coefficient of 0.70 for the tankyrase test set. Taking into account the recent increase in computational power of modern GPUs and relatively low computational complexity of the proposed approach, it can be used as an advanced virtual screening filter for compound prioritization.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Tanquirases/antagonistas & inibidores , Fatores de Tempo
7.
AAPS PharmSciTech ; 20(3): 107, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30746572

RESUMO

Anti-tuberculosis drug delivery has remained a challenge due to inconsistent bioavailability and inadequate sustained-release properties leading to treatment failure. To resolve these drawbacks, a lipopolysaccharide polyelectrolyte complex (PEC) encapsulated with rifampicin (RIF) (as the model drug) was fabricated, using the solvent injection technique (SIT), with soy lecithin (SLCT), and low-molecular-weight chitosan (LWCT). The average particle size and surface charge of RIF-loaded PEC particulates was 151.6 nm and + 33.0 nm, respectively, with noted decreased particle size and surface charge following increase in SLCT-LWCT mass ratio. Encapsulation efficiency (%EE) and drug-loading capacity (%LC) was 64.25% and 5.84%, respectively. Increase in SLCT-LWCT mass ratio significantly increased %EE with a marginal reduction in %LC. In vitro release studies showed a sustained-release profile for the PEC particulate tablet over 24 h (11.4% cumulative release) where the dominant release mechanism involved non-Fickian anomalous transport shifting towards super case II release as SLCT ratios increased (6.4% cumulative release). PEC-tablets prepared without SIT presented with rapid Fickian-diffusion-based drug release with up to 90% RIF release within 4 h. Ex vivo permeability studies revealed that lipopolysaccharide PEComplexation significantly increased the permeability of RIF by ~ 2-fold within the 8-h study period. These results suggest successful encapsulation of RIF within a PEC structure while imparting increased amorphic regions, as indicated by x-ray diffraction, for potential benefits in improved drug dissolution, bioavailability, and dosing.


Assuntos
Antituberculosos/administração & dosagem , Portadores de Fármacos/química , Lipopolissacarídeos/química , Polieletrólitos/química , Rifampina/administração & dosagem , Antituberculosos/química , Antituberculosos/farmacocinética , Disponibilidade Biológica , Rifampina/química , Rifampina/farmacologia , Comprimidos
8.
J Cell Mol Med ; 22(3): 1957-1963, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29377514

RESUMO

Alzheimer's disease (AD) is known to be caused by the accumulation of deformed beta amyloid and hyperphosphorylated tau proteins resulting into formation and aggregation of senile plaques and neurofibrillary tangles in the brain. Additionally, AD is associated with the accumulation of iron or metal ions in the brain which causes oxidative stress. Galantamine (Gal) is one of the therapeutic agents that has been approved for the treatment of AD, but still saddled with numerous side effects and could not address the issue of iron accumulation in the brain. The use of metal chelators to address the iron accumulation has not been successful due to toxicity and inability to address the aggregation of the plaques. We therefore hypothesize a combinatorial antioxidant-metal-chelator approach by formulating a single dosage form that has the ability to prevent the formation of free radicals, plaques and accumulation of iron in the brain. This can be achieved by conjugating Gal with apo-lactoferrin (ApoLf), a natural compound that has high binding affinity for iron, to form an apo-lactoferrin-galantamine proteo-alkaloid conjugate (ApoLf-Gal) as a single dosage form for AD management. The conjugation is achieved through self-assembly of ApoLf which results in encapsulation of Gal. ApoLf changes its conformational structure in the presence of iron; therefore, ApoLf-Gal is proposed to deliver Gal and pick up excess iron when in contact with iron. This strategy has the potential to proffer a dual neuroprotection and neurotherapeutic interventions for the management of AD.


Assuntos
Apoproteínas/química , Galantamina/química , Ferro/metabolismo , Lactoferrina/química , Modelos Moleculares , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Antioxidantes/síntese química , Antioxidantes/farmacologia , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Gerenciamento Clínico , Glicoconjugados/síntese química , Glicoconjugados/farmacologia , Humanos , Ferro/química , Quelantes de Ferro/síntese química , Quelantes de Ferro/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas tau/antagonistas & inibidores , Proteínas tau/química
9.
J Pharm Pharm Sci ; 21(1): 94-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29510799

RESUMO

PURPOSE: This study aimed to develop and analyse poly(DL-lactic acid)-methacrylic acid nanospheres bound to the chelating ligand diethylenetriaminepentaacetic acid (DTPA)  for the targeted delivery of amantadine in Amyotrophic Lateral Sclerosis (ALS). METHODS: The nanospheres were prepared by a double emulsion solvent evaporation technique statistically optimized employing a 3-Factor Box-Behnken experimental design. Analysis of the particle size, zeta potential, polydispersity (Pdl), morphology, drug entrapment and drug release kinetics were carried out. RESULTS: The prepared nanospheres were determined to have particle sizes ranging from 68.31 to 113.6 nm (Pdl ≤ 0.5). An initial burst release (50% of amantadine released in 24 hr) was also obtained, followed by a prolonged release phase of amantadine over 72 hr. Successful conjugation of the chelating ligand onto the surface of the optimised nanospheres was thereafter achieved and confirmed by TEM. The synthesized modified nanospheres were spherical in shape, 105.6 nm in size, with a PdI of 0.24 and zeta potential of -28.0 mV. Conjugation efficiency was determined to be 74%. In vitro and ex vivo cell study results confirmed the intracellular uptake of the modified nanospheres by the NSC-34 cell line and the non-cytotoxicity of the synthesized nanospheres. CONCLUSIONS: Biocompatible amantadine-loaded nanospheres were successfully designed, characterized and optimized employing the randomized Box-Behnken statistical design. Delivery of amantadine over 72 hrs was achieved, with the nanospheres being of a size capable of internalization by the NSC- 34 cells. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Assuntos
Amantadina/uso terapêutico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Antiparkinsonianos/uso terapêutico , Metacrilatos/química , Nanosferas/química , Ácido Pentético/química , Amantadina/química , Animais , Antiparkinsonianos/química , Células Cultivadas , Sistemas de Liberação de Medicamentos , Ligantes , Camundongos , Poliésteres/química
10.
Int J Mol Sci ; 19(3)2018 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-29510526

RESUMO

Ovarian cancer (OC) has gained a great deal of attention due to its aggressive proliferative capabilities, high death rates and poor treatment outcomes, rendering the disease the ultimate lethal gynaecological cancer. Nanotechnology provides a promising avenue to combat this malignancy by the niche fabrication of optimally-structured nanomedicines that ensure potent delivery of chemotherapeutics to OC, employing nanocarriers to act as "intelligent" drug delivery vehicles, functionalized with active targeting approaches for precision delivery of chemotherapeutics to overexpressed biomarkers on cancer cells. Recently, much focus has been implemented to optimize these active targeting mechanisms for treatment/diagnostic purposes employing nanocarriers. This two-part article aims to review the latest advances in active target-based OC interventions, where the impact of the newest antibody, aptamer and folate functionalization on OC detection and treatment is discussed in contrast to the limitations of this targeting mechanism. Furthermore, we discuss the latest advances in nanocarrier based drug delivery in OC, highlighting their commercial/clinical viability of these systems beyond the realms of research. Lastly, in the second section of this review, we comprehensively discussed a focus shift in OC targeting from the well-studied OC cells to the vastly neglected extracellular matrix and motivate the potential for glycosaminoglycans (GAGs) as a more focused extracellular molecular target.


Assuntos
Glicosaminoglicanos/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Feminino , Humanos , Nanopartículas/metabolismo , Neoplasias Ovarianas/imunologia
11.
Int J Mol Sci ; 19(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287783

RESUMO

The present study aimed to design and develop a nanocomposite drug delivery system employing an antineoplastic-loaded antibody functionalized nanomicelle encapsulated within a Chitosan⁻Poly(vinylpyrrolidone)⁻Poly(N-isopropylacrylamide) (C⁻P⁻N) hydrogel to form an in situ forming implant (ISFI), responsive to temperature and pH for cancer cell-targeting following intraperitoneal implantation. The optimum nanomicelle formulation was surface-functionalized with anti-MUC 16 (antibody) for the targeted delivery of methotrexate to human ovarian carcinoma (NIH:OVCAR-5) cells in Athymic nude mice that expressed MUC16, as a preferential form of intraperitoneal ovarian cancer (OC) chemotherapy. The cross-linked interpenetrating C⁻P⁻N hydrogel was synthesized for the preparation of an in situ-forming implant (ISFI). Subsequently, the ISFI was fabricated by encapsulating a nanocomposite comprising of anti-MUC16 (antibody) functionalized methotrexate (MTX)-loaded poly(N-isopropylacrylamide)-b-poly(aspartic acid) (PNIPAAm-b-PASP) nanomicelles (AF(MTX)NM's) within the cross-linked C⁻P⁻N hydrogel. This strategy enabled specificity and increased the residence time of the nanomicelles at tumor sites over a period exceeding one month, enhancing uptake of drugs and preventing recurrence and chemo-resistance. Chemotherapeutic efficacy was tested on the optimal ovarian tumor-bearing Athymic nude mouse model and the results demonstrated tumor regression including reduction in mouse weight and tumor size, as well as a significant (p < 0.05) reduction in mucin 16 levels in plasma and ascitic fluid, and improved survival of mice after treatment with the experimental anti-MUC16/CA125 antibody-bound nanotherapeutic implant drug delivery system (ISFI) (p < 0.05). The study also concluded that ISFI could potentially be considered an important immuno-chemotherapeutic agent that could be employed in human clinical trials of advanced, and/or recurring, metastatic epithelial ovarian cancer (EOC). The development of this ISFI may circumvent the treatment flaws experienced with conventional systemic therapies, effectively manage recurrent disease and ultimately prolong disease-free intervals in ovarian cancer patients.


Assuntos
Implantes Absorvíveis , Protocolos Antineoplásicos , Carcinoma/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Acrilamidas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Quitosana/análogos & derivados , Feminino , Humanos , Hidrogéis/química , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Camundongos , Camundongos Nus , Micelas , Nanopartículas/administração & dosagem , Nanopartículas/química , Povidona/química
12.
Molecules ; 23(6)2018 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-29890780

RESUMO

The complete synthesis, optimization, purification, functionalization and evaluation of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) was reported for potential application in dexamethasone delivery to the ischemic brain tissue. The conditions for high yield were optimized and carbon nanotubes functionalized and PEGylated prior to dexamethasone loading. Morphological changes were confirmed by SEM and TEM. Addition of functional groups to MWCNTs was demonstrated by FTIR. Thermal stability reduced following MWCNTs functionalization as demonstrated in TGA. The presence of carbon at 2θ of 25° and iron at 2θ of 45° in MWCNTs was illustrated by XRD. Polydispersive index and zeta potential were found to be 0.261 and −15.0 mV, respectively. Dexamethasone release increased by 55%, 65% and 95% in pH of 7.4, 6.5 and 5.5 respectively as evaluated by UV-VIS. The functionalized VA-MWCNTs were demonstrated to be less toxic in PC-12 cells in the concentration range from 20 to 20,000 µg/mL. These findings have demonstrated the potential of VA-MWCNTs in the enhancement of fast and prolonged release of dexamethasone which could lead to the effective treatment of ischemic stroke. More work is under way for targeting ischemic sites using atrial natriuretic peptide antibody in stroke rats.


Assuntos
Isquemia Encefálica/prevenção & controle , Dexametasona/química , Dexametasona/farmacologia , Nanotubos de Carbono/química , Polietilenoglicóis/química , Acidente Vascular Cerebral/prevenção & controle , Animais , Catálise , Temperatura Alta , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Células PC12 , Ratos , Análise Espectral/métodos , Difração de Raios X
13.
AAPS PharmSciTech ; 19(1): 303-314, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28717975

RESUMO

Semi-synthetic biopolymer complex (SSBC) nanoparticles were investigated as a potential oral drug delivery system to enhance the bioavailability of a poorly water-soluble model drug acyclovir (ACV). The SSBCs were prepared from cross-linking of hydroxyl groups on hyaluronic acid (HA) with poly(acrylic acid) (PAA) resulting in ether linkages. Thereafter, conjugation of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) onto HA-PAA was accomplished using a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS)-promoted coupling reaction. Nanoparticle powders were prepared by spray drying of drug-loaded SSBC emulsions in a laboratory nano spray dryer. The prepared SSBC was characterized by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), 1H nuclear magnetic resonance (NMR) imaging, and X-ray diffraction (XRD) spectroscopy. The average particle size was found to be 257.92 nm. An entrapment efficiency of 85% was achieved as ACV has enhanced affinity for the hydrophobic inner core of the complex. It was shown that SSBC improved the solubility of ACV by 30% and the ex vivo permeation by 10% compared to the conventional ACV formulation, consequentially enhancing its bioavailability. Overall, this study resulted in the successful preparation of a hybrid chemically conjugated SSBC which has great potential for enhanced oral absorption of ACV with possible tuneable ACV permeability and solubility, producing an "intelligent" nanoenabled drug delivery system.


Assuntos
Aciclovir/administração & dosagem , Antivirais/administração & dosagem , Nanocompostos , 2-Hidroxipropil-beta-Ciclodextrina/química , Resinas Acrílicas/química , Aciclovir/farmacocinética , Antivirais/farmacocinética , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Pós , Solubilidade
14.
Mar Drugs ; 15(8)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28812999

RESUMO

A microporous hydrogel was developed using sodium alginate (alg) and 4-aminosalicylic acid (4-ASA). The synthesized hydrogel was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), Carbon-13 nuclear magnetic resonance (13C-NMR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Additonal carboxyl and hydroxyl functional groups of 4-ASA provided significant lubrication and stress-triggered sol-gel transition to the conjugated hydrogel. In addition, cytotoxicity analysis was undertaken on the conjugated hydrogel using human dermal fibroblast-adult (HDFa) cells, displaying non-toxic characteristics. Drug release profiles displaying 49.6% in the first 8 h and 97.5% within 72 h, similar to the native polymer (42.8% in first 8 h and 90.1% within 72 h). Under applied external stimuli, the modified hydrogel displayed significant gelling properties and structure deformation/recovery behaviour, confirmed using rheological evaluation (viscosity and thixotropic area of 8095.3 mPas and 26.23%, respectively). The modified hydrogel, thus, offers great possibility for designing smart synovial fluids as a biomimetic aqueous lubricant for joint-related injuries and arthritis-induced conditions. In addtion, the combination of thixotropy, non-toxicity, and drug release capabilities enables potential viscosupplementation for clinical application.


Assuntos
Ácido Aminossalicílico/uso terapêutico , Artrite , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Alginatos , Ácido Aminossalicílico/síntese química , Ácido Aminossalicílico/química , Artrite/complicações , Artrite/tratamento farmacológico , Varredura Diferencial de Calorimetria , Isótopos de Carbono , Liberação Controlada de Fármacos , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Ressonância Magnética Nuclear Biomolecular , Viscossuplementação
15.
Molecules ; 22(12)2017 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-29186867

RESUMO

Direct metal-liganded bioactive coordination complexes are known to be sensitive to stimuli such as pH, light, ion activation, or redox cues. This results in the controlled release of the bioactive(s). Compared to other drug delivery strategies based on metal complexation, this type of coordination negates a multi-step drug loading methodology and offers customized physiochemical properties through judicious choice of modulating ancillary ligands. Bioactive release depends on simple dissociative kinetics. Nonetheless, there are challenges encountered when translating the pure coordination chemistry into the biological and physiological landscape. The stability of the metal-bioactive complex in the biological milieu may be compromised, disrupting the stimuli-responsive release mechanism, with premature release of the bioactive. Research has therefore progressed to the incorporation of metal-liganded bioactives with established drug delivery strategies to overcome these limitations. This review will highlight and critically assess current research interventions in order to predict the direction that pharmaceutical scientists could pursue to arrive at tailored and effective metal-liganded bioactive carriers for stimuli-responsive drug release.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Ligantes , Metais , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Metais/química
16.
Pharm Dev Technol ; 22(2): 283-295, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27470222

RESUMO

Semi-synthetic biopolymer complexes (SSBCs) have potential as nano-carriers for oral drug delivery due to their exceptional properties obtained by merging the properties of synthetic (e.g. good thermal and mechanical properties) with natural polymers (e.g. biocompatibility); thus, forming a new class of biopolymer materials incorporating the best of both worlds. Despite development in drug delivery systems, oral administration of therapeutic agent is still preferred. Several nano-polymeric systems has been prepared and characterized based on both synthetic polymers and natural polymers, each with its limitations and advantages. Among natural polymers, alginate, chitosan, and hyaluronic acid (HA) have been studied broadly for the fabrication of nanoparticles systems. This review discusses a newly investigated class of polymer called SSBCs as oral drug nano-carriers. It also discusses certain significant structural and functional attributes or effects which are essential to be taken into consideration when an oral drug delivery system is developed. The review is aimed at describing complexation of few natural polymers (e.g. polysaccharides) with selected synthetic polymers or synthetic chemicals to indicate some of the factors that influence preparation, solubility, formation, and stability of these SSBCs.


Assuntos
Portadores de Fármacos/química , Nanoestruturas/química , Preparações Farmacêuticas/administração & dosagem , Polissacarídeos/química , Administração Oral , Animais , Disponibilidade Biológica , Biopolímeros/química , Portadores de Fármacos/síntese química , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Humanos , Polissacarídeos/síntese química
17.
Pharm Dev Technol ; 22(4): 476-486, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27268737

RESUMO

The complexity of the brain and the membranous blood-brain barrier (BBB) has proved to be a significant limitation to the systemic delivery of pharmaceuticals to the brain rendering them sub-therapeutic and ineffective in the treatment of neurological diseases. Apart from this, lack of innovation in product development to counteract the problem is also a major contributing factor to a poor therapeutic outcome. Various innovative strategies show potential in treating some of the neurological disorders; however, drug delivery remains the most popular. To attain therapeutic drug levels in the central nervous system, large, intolerable systemic doses are generally administered. The major factors responsible for the success maintenance therapy of neurological diseases included controlled and sustained release of neurotherapeutics, reduced frequency of administration, higher bioavailability, and patient compliances. Conventional oral or injectable formulations cannot satisfy all the requirements in many circumstances. This article reviews the therapeutic implantable polymeric and transdermal devices employed in an attempt to effectively achieve therapeutic quantities of drug across the BBB over a prolonged period, to improve patient disease prognosis.


Assuntos
Fármacos do Sistema Nervoso Central/administração & dosagem , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Implantes de Medicamento/química , Polímeros/química , Administração Cutânea , Animais , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Humanos
18.
AAPS PharmSciTech ; 18(3): 654-670, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27184677

RESUMO

In this study, an optimized epichlorohydrin-crosslinked semi-interpenetrating polymer network xerogel matrix system (XePoMas) for the controlled delivery of sulpiride was prepared. The ability of XePoMas to sustain drug release was determined by in vitro and in vivo drug release experiments. Swelling of the xerogel over the 24-h experimental period ranged from 346 to 648%; swelling was observed to increase exponentially over the initial 8 h. In vitro drug release depicted a linear zero order drug release profile with an R 2 value of 0.9956. The ability of the fabricated XePoMas to sustain drug release and enhance bioavailability of sulpiride in vivo was investigated by evaluating the plasma drug concentration over 24 h in the large pig model. The optimized XePoMas formulation was shown to increase intestinal absorption of sulpiride to a greater extent than the marketed product in vivo, with a C max of 830.58 ng/mL after 15 h.


Assuntos
Polietilenoglicóis/química , Polímeros/química , Polissacarídeos Bacterianos/química , Sulpirida/química , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Epicloroidrina/química , Epicloroidrina/metabolismo , Sulpirida/metabolismo , Suínos
19.
AAPS PharmSciTech ; 18(3): 617-628, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27173987

RESUMO

Poor oral bioavailability is the single most important challenge in drug delivery. Prominent among the factors responsible for this is metabolic activity of the intestinal and hepatic cytochrome P450 (CYP450) enzymes. In preliminary studies, it was demonstrated that 8-arm-PEG was able to inhibit the felodipine metabolism. Therefore, this report investigated the oral bioavailability-enhancing property of 8-arm-PEG employing detailed in vitro, in vivo, and in silico evaluations. The in vitro metabolism of felodipine by cytochrome P450 3A4-expressed human liver microsomes (HLM) was optimized yielding a typical Michaelis-Menten plot through the application of Enzyme Kinetic Module software from where the enzyme kinetic parameters were determined. In vitro investigation of 8-arm-poly(ethylene glycol) against CYP3A4-catalyzed felodipine metabolism employing human liver microsomes compared closely with naringenin, a typical grapefruit flavonoid, yielding IC50 values of 7.22 and 121.97 µM, respectively. The investigated potential of 8-arm-poly(ethylene glycol) in oral drug delivery yielded satisfactory in vitro drug release results. The in vivo studies of the effects of 8-arm-poly(ethylene glycol) on the oral bioavailability of felodipine as performed in the Large White pig model showed a >100% increase in plasma felodipine levels compared to controls, with no apparent effect on systemic felodipine clearance. The outcome of this research presents a novel CYP3A4 inhibitor, 8-arm-poly(ethylene glycol) for oral bioavailability enhancement.


Assuntos
Etilenoglicóis/química , Felodipino/química , Felodipino/metabolismo , Administração Oral , Adulto , Idoso , Animais , Disponibilidade Biológica , Citocromo P-450 CYP3A , Sistemas de Liberação de Medicamentos/métodos , Feminino , Flavanonas/metabolismo , Flavonoides/metabolismo , Humanos , Cinética , Fígado/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Suínos , Adulto Jovem
20.
AAPS PharmSciTech ; 18(8): 3116-3128, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28523633

RESUMO

A novel humic acid and polyquaternium-10 polyelectrolyte complex (PEC) was synthesized utilizing two methods and the solubility and permeability of efavirenz (EFV) were established. Complexation-precipitation and extrusion-spheronization were used to synthesize and compare the drug-loaded PECs. The chemical integrity, thermo-mechanical differences, and morphology between the drug-loaded PECs produced by the two methods were assessed by attenuated total reflectance-Fourier transform infrared, differential scanning calorimetry, and SEM. The extent of drug solubilization was determined using the saturation solubility test while the biocompatibility of both PECs was confirmed by cytotoxicity studies on human adenocarcinoma cells (caco2). Bio-relevant media was used for the solubility and permeability analysis of the optimized PEC formulations for accurate assessment of formulation performance. Ritonavir (RTV) was loaded into the optimized formulation to further corroborate the impact of the PEC on the solubility and permeability properties of a poorly soluble and poorly permeable drug. The optimized EFV-loaded PEC and the RTV-loaded PEC exhibited 14.16 ± 2.81% and 4.39 ± 0.57% increase in solubility, respectively. Both PECs were compared to currently marketed formulations. Intestinal permeation results revealed an enhancement of 61.24 ± 6.92% for EFV and 38.78 ± 0.50% for RTV. Although both fabrication methods produced PECs that enhanced the solubility and permeability of the model Biopharmaceutics Classification System Class II and IV drugs, extrusion-spheronization was selected as most optimal based on the higher solubility and permeability improvement and the impact on caco2 cell viability.


Assuntos
Celulose/análogos & derivados , Precipitação Química , Substâncias Húmicas/normas , Polieletrólitos/síntese química , Polieletrólitos/normas , Compostos de Amônio Quaternário/síntese química , Animais , Células CACO-2 , Varredura Diferencial de Calorimetria/métodos , Celulose/síntese química , Celulose/farmacologia , Celulose/normas , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Permeabilidade , Polieletrólitos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/normas , Solubilidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA