RESUMO
Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al3+, but can exhibit reduced expression when introgressed into different lines. We show that allele-specific SbMATE transactivation occurs and is caused by factors located away from SbMATE Using expression-QTL mapping and expression genome-wide association mapping, we establish that SbMATE transcription is controlled in a bipartite fashion, primarily in cis but also in trans Multiallelic promoter transactivation and ChIP analyses demonstrated that intermolecular effects on SbMATE expression arise from a WRKY and a zinc finger-DHHC transcription factor (TF) that bind to and trans-activate the SbMATE promoter. A haplotype analysis in sorghum RILs indicates that the TFs influence SbMATE expression and Al tolerance. Variation in SbMATE expression likely results from changes in tandemly repeated cis sequences flanking a transposable element (a miniature inverted repeat transposable element) insertion in the SbMATE promoter, which are recognized by the Al3+-responsive TFs. According to our model, repeat expansion in Al-tolerant genotypes increases TF recruitment and, hence, SbMATE expression, which is, in turn, lower in Al-sensitive genetic backgrounds as a result of lower TF expression and fewer binding sites. We thus show that even dominant cis regulation of an agronomically important gene can be subjected to precise intermolecular fine-tuning. These concerted cis/trans interactions, which allow the plant to sense and respond to environmental cues, such as Al3+ toxicity, can now be used to increase yields and food security on acidic soils.
Assuntos
Alumínio/toxicidade , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Proteínas de Transporte de Ânions/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Sorghum/genética , Sorghum/metabolismo , Sequências de Repetição em Tandem/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The binding protein (BiP) has been demonstrated to participate in innate immunity and attenuate endoplasmic reticulum- and osmotic stress-induced cell death. Here, we employed transgenic plants with manipulated levels of BiP to assess whether BiP also controlled developmental and hypersensitive programmed cell death (PCD). Under normal conditions, the BiP-induced transcriptome revealed a robust down-regulation of developmental PCD genes and an up-regulation of the genes involved in hypersensitive PCD triggered by nonhost-pathogen interactions. Accordingly, the BiP-overexpressing line displayed delayed leaf senescence under normal conditions and accelerated hypersensitive response triggered by Pseudomonas syringae pv tomato in soybean (Glycine max) and tobacco (Nicotiana tabacum), as monitored by measuring hallmarks of PCD in plants. The BiP-mediated delay of leaf senescence correlated with the attenuation of N-rich protein (NRP)-mediated cell death signaling and the inhibition of the senescence-associated activation of the unfolded protein response (UPR). By contrast, under biological activation of salicylic acid (SA) signaling and hypersensitive PCD, BiP overexpression further induced NRP-mediated cell death signaling and antagonistically inhibited the UPR. Thus, the SA-mediated induction of NRP cell death signaling occurs via a pathway distinct from UPR. Our data indicate that during the hypersensitive PCD, BiP positively regulates the NRP cell death signaling through a yet undefined mechanism that is activated by SA signaling and related to ER functioning. By contrast, BiP's negative regulation of leaf senescence may be linked to its capacity to attenuate the UPR activation and NRP cell death signaling. Therefore, BiP can function either as a negative or positive modulator of PCD events.
Assuntos
Retículo Endoplasmático/metabolismo , Glycine max/citologia , Glycine max/genética , Proteínas de Choque Térmico/genética , Proteínas de Plantas/metabolismo , Caspase 1/metabolismo , Morte Celular , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Choque Térmico/metabolismo , Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Pseudomonas syringae/fisiologia , Transdução de Sinais , Glycine max/imunologia , Glycine max/microbiologia , Fatores de Tempo , Resposta a Proteínas não Dobradas/genéticaRESUMO
Glycine max NAC81 (GmNAC81) is a downstream effector of the DCD/NRP-mediated cell death signaling, which interacts with GmNAC30 to fully induce the caspase 1-like vacuolar processing enzyme (VPE) expression, the executioner of the cell death program. GmNAC81 has been previously shown to positively modulate leaf senescence via the NRP/GmNAC81/VPE signaling module. Here, we examined the transcriptome induced by GmNAC81 overexpression and leaf senescence and showed that GmNAC81 further modulates leaf senescence by regulating an extensive repertoire of functionally characterized senescence-associated genes (SAGs). Because the NRP/GmNAC81/VPE signaling circuit also relays stress-induced cell death signals, we examined the effect of GmNAC81 overexpression in drought responses. Enhanced GmNAC81 expression in the transgenic lines increased sensitivity to water deprivation. Under progressive drought, the GmNAC81-overexpressing lines displayed severe leaf wilting, a larger and faster decline in leaf Ψw, relative water content (RWC), photosynthesis rate, stomatal conductance, and transpiration rate, in addition to higher Ci/Ca and lower Fm/Fv ratios compared to the BR16 control line. Collectively, these results indicate that the photosynthetic activity and apparatus were more affected by drought in the transgenic lines. Consistent with hypersensitivity to drought, chlorophyll loss, and lipid peroxidation were higher in the GmNAC81-overexpressing lines than in BR16 under dehydration. In addition to inducing VPE expression, GmNAC81 overexpression uncovered the regulation of typical drought-responsive genes. In particular, key regulators and effectors of ABA signaling were suppressed by GmNAC81 overexpression. These results suggest that GmNAC81 may negatively control drought tolerance not only via VPE activation but also via suppression of ABA signaling.
RESUMO
BiP overexpression improves leaf water relations during droughts and delays drought-induced leaf senescence. However, whether BiP controls cellular homeostasis under drought conditions or simply delays dehydration-induced leaf senescence as the primary cause for water stress tolerance remains to be determined. To address this issue, we examined the drought-induced transcriptomes of BiP-overexpressing lines and wild-type (WT) lines under similar leaf water potential (ψw) values. In the WT leaves, a ψw reduction of -1.0 resulted in 1339 up-regulated and 2710 down-regulated genes; in the BiP-overexpressing line 35S::BiP-4, only 334 and 420 genes were induced and repressed, respectively, at a similar leaf ψwâ=â-1.0 MPa. This level of leaf dehydration was low enough to induce a repertory of typical drought-responsive genes in WT leaves but not in 35S::BiP-4 dehydrated leaves. The responders included hormone-related genes, functional and regulatory genes involved in drought protection and senescence-associated genes. The number of differentially expressed genes in the 35S::BiP-4 line approached the wild type number at a leaf ψwâ=â-1.6 MPa. However, N-rich protein (NRP)- mediated cell death signaling genes and unfolded protein response (UPR) genes were induced to a much lower extent in the 35S::BiP-4 line than in the WT even at ψwâ=â-1.6 MPa. The heatmaps for UPR, ERAD (ER-associated degradation protein system), drought-responsive and cell death-associated genes revealed that the leaf transcriptome of 35S::BiP-4 at ψwâ=â-1.0 MPa clustered together with the transcriptome of well-watered leaves and they diverged considerably from the drought-induced transcriptome of the WT (ψwâ=â-1.0, -1.7 and -2.0 MPa) and 35S::BiP-4 leaves at ψwâ=â-1.6 MPa. Taken together, our data revealed that BiP-overexpressing lines requires a much higher level of stress (ψwâ=â-1.6 MPa) to respond to drought than that of WT (ψwâ=â-1.0). Therefore, BiP overexpression maintains cellular homeostasis under water stress conditions and thus ameliorates endogenous osmotic stress.