Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell ; 185(8): 1402-1413.e21, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35366416

RESUMO

The Avars settled the Carpathian Basin in 567/68 CE, establishing an empire lasting over 200 years. Who they were and where they came from is highly debated. Contemporaries have disagreed about whether they were, as they claimed, the direct successors of the Mongolian Steppe Rouran empire that was destroyed by the Turks in ∼550 CE. Here, we analyze new genome-wide data from 66 pre-Avar and Avar-period Carpathian Basin individuals, including the 8 richest Avar-period burials and further elite sites from Avar's empire core region. Our results provide support for a rapid long-distance trans-Eurasian migration of Avar-period elites. These individuals carried Northeast Asian ancestry matching the profile of preceding Mongolian Steppe populations, particularly a genome available from the Rouran period. Some of the later elite individuals carried an additional non-local ancestry component broadly matching the steppe, which could point to a later migration or reflect greater genetic diversity within the initial migrant population.


Assuntos
Povo Asiático , DNA Antigo , Genética Populacional , Povo Asiático/genética , Genoma , História Antiga , Migração Humana/história , Humanos , Enxofre
2.
Cell ; 184(14): 3597-3598, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34242562

RESUMO

In this issue of Cell, Wang et al. harness ancient DNA methods to produce and analyze new genomic data from 31 individuals from South China, dated between 500 and 10,000-12,000 years ago. The study reveals a complex interplay between groups of three different genetic ancestries and provides a new perspective on interactions and agricultural dispersals in South China and Southeast Asia.


Assuntos
Agricultura , DNA Antigo , Sudeste Asiático , China , Estruturas Genéticas , Humanos
3.
Cell ; 181(5): 1146-1157.e11, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32470400

RESUMO

We report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the "Canaanite" material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants. We show evidence that different "Canaanite" groups genetically resemble each other more than other populations. We find that Levant-related modern populations typically have substantial ancestry coming from populations related to the Chalcolithic Zagros and the Bronze Age Southern Levant. These groups also harbor ancestry from sources we cannot fully model with the available data, highlighting the critical role of post-Bronze-Age migrations into the region over the past 3,000 years.


Assuntos
DNA Antigo/análise , Etnicidade/genética , Fluxo Gênico/genética , Arqueologia/métodos , DNA Mitocondrial/genética , Etnicidade/história , Fluxo Gênico/fisiologia , Variação Genética/genética , Genética Populacional/métodos , Genoma Humano/genética , Genômica/métodos , Haplótipos , História Antiga , Migração Humana/história , Humanos , Região do Mediterrâneo , Oriente Médio , Análise de Sequência de DNA
4.
Cell ; 171(1): 59-71.e21, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938123

RESUMO

We assembled genome-wide data from 16 prehistoric Africans. We show that the anciently divergent lineage that comprises the primary ancestry of the southern African San had a wider distribution in the past, contributing approximately two-thirds of the ancestry of Malawi hunter-gatherers ∼8,100-2,500 years ago and approximately one-third of the ancestry of Tanzanian hunter-gatherers ∼1,400 years ago. We document how the spread of farmers from western Africa involved complete replacement of local hunter-gatherers in some regions, and we track the spread of herders by showing that the population of a ∼3,100-year-old pastoralist from Tanzania contributed ancestry to people from northeastern to southern Africa, including a ∼1,200-year-old southern African pastoralist. The deepest diversifications of African lineages were complex, involving either repeated gene flow among geographically disparate groups or a lineage more deeply diverging than that of the San contributing more to some western African populations than to others. We finally leverage ancient genomes to document episodes of natural selection in southern African populations. PAPERCLIP.


Assuntos
População Negra/genética , Genoma Humano , África , Osso e Ossos/química , DNA Antigo/análise , Feminino , Fósseis , Genética Médica , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Estilo de Vida , Masculino
5.
Nature ; 601(7894): 584-587, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937939

RESUMO

To explore kinship practices at chambered tombs in Early Neolithic Britain, here we combined archaeological and genetic analyses of 35 individuals who lived about 5,700 years ago and were entombed at Hazleton North long cairn1. Twenty-seven individuals are part of the first extended pedigree reconstructed from ancient DNA, a five-generation family whose many interrelationships provide statistical power to document kinship practices that were invisible without direct genetic data. Patrilineal descent was key in determining who was buried in the tomb, as all 15 intergenerational transmissions were through men. The presence of women who had reproduced with lineage men and the absence of adult lineage daughters suggest virilocal burial and female exogamy. We demonstrate that one male progenitor reproduced with four women: the descendants of two of those women were buried in the same half of the tomb over all generations. This suggests that maternal sub-lineages were grouped into branches whose distinctiveness was recognized during the construction of the tomb. Four men descended from non-lineage fathers and mothers who also reproduced with lineage male individuals, suggesting that some men adopted the children of their reproductive partners by other men into their patriline. Eight individuals were not close biological relatives of the main lineage, raising the possibility that kinship also encompassed social bonds independent of biological relatedness.


Assuntos
Sepultamento , DNA Antigo , Adulto , Arqueologia , Criança , Feminino , Humanos , Masculino , Mães , Linhagem
6.
Nature ; 603(7900): 290-296, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197631

RESUMO

Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa1-4. Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations3,5. Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80-20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalization at the end of the Pleistocene epoch.


Assuntos
População Negra , DNA Antigo , Genética Populacional , África Subsaariana , Arqueologia , População Negra/genética , População Negra/história , DNA Antigo/análise , Fluxo Gênico/genética , Genoma Humano/genética , História Antiga , Humanos
7.
Nature ; 599(7883): 41-46, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34671160

RESUMO

We are a group of archaeologists, anthropologists, curators and geneticists representing diverse global communities and 31 countries. All of us met in a virtual workshop dedicated to ethics in ancient DNA research held in November 2020. There was widespread agreement that globally applicable ethical guidelines are needed, but that recent recommendations grounded in discussion about research on human remains from North America are not always generalizable worldwide. Here we propose the following globally applicable guidelines, taking into consideration diverse contexts. These hold that: (1) researchers must ensure that all regulations were followed in the places where they work and from which the human remains derived; (2) researchers must prepare a detailed plan prior to beginning any study; (3) researchers must minimize damage to human remains; (4) researchers must ensure that data are made available following publication to allow critical re-examination of scientific findings; and (5) researchers must engage with other stakeholders from the beginning of a study and ensure respect and sensitivity to stakeholder perspectives. We commit to adhering to these guidelines and expect they will promote a high ethical standard in DNA research on human remains going forward.


Assuntos
Cadáver , DNA Antigo/análise , Guias como Assunto , Genética Humana/ética , Internacionalidade , Biologia Molecular/ética , Indígena Americano ou Nativo do Alasca , Antropologia/ética , Arqueologia/ética , Relações Comunidade-Instituição , Humanos , Povos Indígenas , Participação dos Interessados , Traduções
8.
Genome Res ; 33(4): 622-631, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37072186

RESUMO

Density separation is a process routinely used to segregate minerals, organic matter, and even microplastics, from soils and sediments. Here we apply density separation to archaeological bone powders before DNA extraction to increase endogenous DNA recovery relative to a standard control extraction of the same powders. Using nontoxic heavy liquid solutions, we separated powders from the petrous bones of 10 individuals of similar archaeological preservation into eight density intervals (2.15 to 2.45 g/cm3, in 0.05 increments). We found that the 2.30 to 2.35 g/cm3 and 2.35 to 2.40 g/cm3 intervals yielded up to 5.28-fold more endogenous unique DNA than the corresponding standard extraction (and up to 8.53-fold before duplicate read removal), while maintaining signals of ancient DNA authenticity and not reducing library complexity. Although small 0.05 g/cm3 intervals may maximally optimize yields, a single separation to remove materials with a density above 2.40 g/cm3 yielded up to 2.57-fold more endogenous DNA on average, which enables the simultaneous separation of samples that vary in preservation or in the type of material analyzed. While requiring no new ancient DNA laboratory equipment and fewer than 30 min of extra laboratory work, the implementation of density separation before DNA extraction can substantially boost endogenous DNA yields without decreasing library complexity. Although subsequent studies are required, we present theoretical and practical foundations that may prove useful when applied to other ancient DNA substrates such as teeth, other bones, and sediments.


Assuntos
DNA Antigo , Osso Petroso , Humanos , Pós , Plásticos , DNA/genética
9.
Nature ; 570(7760): 236-240, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168094

RESUMO

Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup'ik1-3. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup'ik and Aleut populations remains uncertain4-6. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques4,7-9, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup'ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source.


Assuntos
Migração Humana/história , Inuíte/classificação , Inuíte/genética , Filogenia , Filogeografia , África , Alaska , Alelos , Regiões Árticas , Sudeste Asiático , Canadá , Europa (Continente) , Genoma Humano/genética , Haplótipos , História Antiga , Humanos , Análise de Componente Principal , Sibéria/etnologia
10.
Proc Natl Acad Sci U S A ; 119(15): e2106743119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35389750

RESUMO

Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared "predicted" genetic contributions to height from paleogenomic data and "achieved" adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.


Assuntos
Agricultura , Estatura , Fazendeiros , Saúde , Esqueleto , Adulto , Agricultura/história , Estatura/genética , Criança , DNA Antigo , Europa (Continente) , Fazendeiros/história , Variação Genética , Genômica , Saúde/história , História Antiga , Humanos , Paleopatologia , Esqueleto/anatomia & histologia
11.
Proc Natl Acad Sci U S A ; 119(17): e2116722119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412864

RESUMO

The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague's formative years in terms of its early evolution and ecology.


Assuntos
Genoma Bacteriano , Peste , Yersinia pestis , Criação de Animais Domésticos/história , Animais , DNA Antigo , Variação Genética , História Antiga , Migração Humana/história , Humanos , Filogenia , Peste/epidemiologia , Peste/história , Peste/microbiologia , Yersinia pestis/classificação , Yersinia pestis/genética , Yersinia pestis/isolamento & purificação
12.
Proc Natl Acad Sci U S A ; 119(41): e2205272119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191217

RESUMO

Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.


Assuntos
Arqueologia , Militares , Arqueologia/métodos , Europa (Continente) , Grécia , História Antiga , Humanos , Guerra
13.
Emerg Infect Dis ; 30(4): 816-818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526306

RESUMO

We used pathogen genomics to test orangutan specimens from a museum in Bonn, Germany, to identify the origin of the animals and the circumstances of their death. We found monkeypox virus genomes in the samples and determined that they represent cases from a 1965 outbreak at Rotterdam Zoo in Rotterdam, the Netherlands.


Assuntos
Monkeypox virus , Museus , Animais , Genômica , Surtos de Doenças , Alemanha/epidemiologia
14.
Genome Res ; 31(3): 472-483, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33579752

RESUMO

Ancient DNA sampling methods-although optimized for efficient DNA extraction-are destructive, relying on drilling or cutting and powdering (parts of) bones and teeth. As the field of ancient DNA has grown, so have concerns about the impact of destructive sampling of the skeletal remains from which ancient DNA is obtained. Due to a particularly high concentration of endogenous DNA, the cementum of tooth roots is often targeted for ancient DNA sampling, but destructive sampling methods of the cementum often result in the loss of at least one entire root. Here, we present a minimally destructive method for extracting ancient DNA from dental cementum present on the surface of tooth roots. This method does not require destructive drilling or grinding, and, following extraction, the tooth remains safe to handle and suitable for most morphological studies, as well as other biochemical studies, such as radiocarbon dating. We extracted and sequenced ancient DNA from 30 teeth (and nine corresponding petrous bones) using this minimally destructive extraction method in addition to a typical tooth sampling method. We find that the minimally destructive method can provide ancient DNA that is of comparable quality to extracts produced from teeth that have undergone destructive sampling processes. Further, we find that a rigorous cleaning of the tooth surface combining diluted bleach and UV light irradiation seems sufficient to minimize external contaminants usually removed through the physical removal of a superficial layer when sampling through regular powdering methods.


Assuntos
DNA Antigo/isolamento & purificação , Cemento Dentário/química , Dente/química , Humanos , Masculino , Dente/anatomia & histologia
15.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34312252

RESUMO

Archaeological dental calculus, or mineralized plaque, is a key tool to track the evolution of oral microbiota across time in response to processes that impacted our culture and biology, such as the rise of farming during the Neolithic. However, the extent to which the human oral flora changed from prehistory until present has remained elusive due to the scarcity of data on the microbiomes of prehistoric humans. Here, we present our reconstruction of oral microbiomes via shotgun metagenomics of dental calculus in 44 ancient foragers and farmers from two regions playing a pivotal role in the spread of farming across Europe-the Balkans and the Italian Peninsula. We show that the introduction of farming in Southern Europe did not alter significantly the oral microbiomes of local forager groups, and it was in particular associated with a higher abundance of the species Olsenella sp. oral taxon 807. The human oral environment in prehistory was dominated by a microbial species, Anaerolineaceae bacterium oral taxon 439, that diversified geographically. A Near Eastern lineage of this bacterial commensal dispersed with Neolithic farmers and replaced the variant present in the local foragers. Our findings also illustrate that major taxonomic shifts in human oral microbiome composition occurred after the Neolithic and that the functional profile of modern humans evolved in recent times to develop peculiar mechanisms of antibiotic resistance that were previously absent.


Assuntos
Agricultura/história , DNA Antigo , Cálculos Dentários/genética , Cálculos Dentários/microbiologia , Microbiota/genética , Bactérias/genética , Península Balcânica , Cálculos Dentários/química , Resistência Microbiana a Medicamentos/genética , Europa (Continente) , História Antiga , História Medieval , Humanos , Filogenia , Plantas/química
16.
Genome Res ; 30(3): 427-436, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32098773

RESUMO

DNA recovery from ancient human remains has revolutionized our ability to reconstruct the genetic landscape of the past. Ancient DNA research has benefited from the identification of skeletal elements, such as the cochlear part of the osseous inner ear, that provides optimal contexts for DNA preservation; however, the rich genetic information obtained from the cochlea must be counterbalanced against the loss of morphological information caused by its sampling. Motivated by similarities in developmental processes and histological properties between the cochlea and auditory ossicles, we evaluate the ossicles as an alternative source of ancient DNA. We show that ossicles perform comparably to the cochlea in terms of DNA recovery, finding no substantial reduction in data quantity and minimal differences in data quality across preservation conditions. Ossicles can be sampled from intact skulls or disarticulated petrous bones without damage to surrounding bone, and we argue that they should be used when available to reduce damage to human remains. Our results identify another optimal skeletal element for ancient DNA analysis and add to a growing toolkit of sampling methods that help to better preserve skeletal remains for future research while maximizing the likelihood that ancient DNA analysis will produce useable results.


Assuntos
DNA Antigo/análise , Ossículos da Orelha/química , Cóclea/química , Ossículos da Orelha/anatomia & histologia , Ossículos da Orelha/embriologia , Humanos , Análise de Sequência de DNA
17.
Nature ; 548(7666): 214-218, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783727

RESUMO

The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We have assembled genome-wide data from 19 ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. Here we show that Minoans and Mycenaeans were genetically similar, having at least three-quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean, and most of the remainder from ancient populations related to those of the Caucasus and Iran. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter-gatherers of eastern Europe and Siberia, introduced via a proximal source related to the inhabitants of either the Eurasian steppe or Armenia. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the Early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.


Assuntos
Etnicidade/genética , Filogenia , Cromossomos Humanos X/genética , Etnicidade/história , Feminino , Grécia , História Antiga , Migração Humana/história , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
18.
Nature ; 538(7626): 510-513, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27698418

RESUMO

The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100-2,700 years before present) and one from Tonga (about 2,700-2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Genômica , Migração Humana/história , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Filogenia , Feminino , Genética Populacional , História Antiga , Humanos , Masculino , Nova Guiné/etnologia , Polinésia/etnologia , Tonga , Vanuatu
19.
Environ Sci Technol ; 55(21): 14407-14413, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34724791

RESUMO

Forty years ago, in a seminal paper published in Science, Settle and Patterson used archeological and historical data to estimate the rates of worldwide lead production since the discovery of cupellation, approximately 5000 years ago. Here, we record actual lead exposure of a human population by direct measurements of the concentrations of lead in petrous bones of individuals representing approximately 12 000 years of inhabitation in Italy. This documentation of lead pollution throughout human history indicates that, remarkably, much of the estimated dynamics in lead production is replicated in human exposure. Thus, lead pollution in humans has closely followed anthropogenic lead production. This observation raises concerns that the forecasted increase in the production of lead and other metals might affect human health in the near future.


Assuntos
Osso e Ossos , Poluição Ambiental , Osso e Ossos/química , Monitoramento Ambiental , Humanos , Itália , Metais/análise
20.
Nature ; 528(7583): 499-503, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26595274

RESUMO

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Assuntos
Genoma Humano/genética , Seleção Genética/genética , Agricultura/história , Ásia/etnologia , Estatura/genética , Osso e Ossos , DNA/genética , DNA/isolamento & purificação , Dieta/história , Europa (Continente)/etnologia , Genética Populacional , Haplótipos/genética , História Antiga , Humanos , Imunidade/genética , Masculino , Herança Multifatorial/genética , Pigmentação/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA