Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(7): e16675, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022885

RESUMO

Heterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas. Our experiments demonstrated that the combination of labile organic matter supply and temperature increase synergistically boosted bacterial growth. This suggests that, besides low seawater temperature, carbon limitation also hinders heterotrophic bacterial activity. Through the analysis of metagenome-assembled genomes, we discovered distinct genomic adaptation strategies in Bacteroidia and Gammaproteobacteria, both of which respond to organic matter. Both natural phytoplankton blooms and experimental addition of organic matter favoured Bacteroidia, which possess a large number of gene copies and a wide range of functional membrane transporters, glycoside hydrolases, and aminopeptidases. In contrast, the genomes of organic-matter-responsive Gammaproteobacteria were characterized by high densities of transcriptional regulators and transporters. Our findings suggest that bacterioplankton in the Weddell Sea, which respond to organic matter, employ metabolic strategies similar to those of their counterparts in temperate oceans. These strategies enable efficient growth at extremely low seawater temperatures, provided that organic carbon limitation is alleviated.


Assuntos
Gammaproteobacteria , Fitoplâncton , Água do Mar , Água do Mar/microbiologia , Regiões Antárticas , Gammaproteobacteria/metabolismo , Gammaproteobacteria/genética , Fitoplâncton/metabolismo , Fitoplâncton/genética , Carbono/metabolismo , Microbiota , Plâncton/metabolismo , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Metagenoma , Ecossistema , Bacteroidetes/genética , Bacteroidetes/metabolismo , Bacteroidetes/crescimento & desenvolvimento , Temperatura
2.
Environ Microbiol ; 24(9): 4030-4048, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656758

RESUMO

Carbon cycling by Antarctic microbial plankton is poorly understood but it plays a major role in CO2 sequestration in the Southern Ocean. We investigated the summer bacterioplankton community in the largely understudied Weddell Sea, applying Illumina amplicon sequencing, measurements of bacterial production and chemical analyses of organic matter. The results revealed that the patchy distribution of productive coastal polynyas and less productive, mostly ice-covered sites was the major driver of the spatial changes in the taxonomic composition and activity of bacterioplankton. Gradients in organic matter availability induced by phytoplankton blooms were reflected in the concentrations and composition of dissolved carbohydrates and proteins. Bacterial production at bloom stations was, on average, 2.7 times higher than at less productive sites. Abundant bloom-responsive lineages were predominately affiliated with ubiquitous marine taxa, including Polaribacter, Yoonia-Loktanella, Sulfitobacter, the SAR92 clade, and Ulvibacter, suggesting a widespread genetic potential for adaptation to sub-zero seawater temperatures. A co-occurrence network analysis showed that dominant taxa at stations with low phytoplankton productivity were highly connected, indicating beneficial interactions. Overall, our study demonstrates that heterotrophic bacterial communities along Weddell Sea ice shelves were primarily constrained by the availability of labile organic matter rather than low seawater temperature.


Assuntos
Dióxido de Carbono , Flavobacteriaceae , Regiões Antárticas , Carboidratos , Carbono , Flavobacteriaceae/genética , Fitoplâncton , Plâncton/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
3.
Sci Rep ; 7(1): 4129, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646231

RESUMO

Transparent exopolymer particles (TEP) are a class of marine gel particles and important links between surface ocean biology and atmospheric processes. Derived from marine microorganisms, these particles can facilitate the biological pumping of carbon dioxide to the deep sea, or act as cloud condensation and ice nucleation particles in the atmosphere. Yet, environmental controls on TEP abundance in the ocean are poorly known. Here, we investigated some of these controls during the first multiyear time-series on TEP abundance for the Fram Strait, the Atlantic gateway to the Central Arctic Ocean. Data collected at the Long-Term Ecological Research observatory HAUSGARTEN during 2009 to 2014 indicate a strong biological control with highest abundance co-occurring with the prymnesiophyte Phaeocystis pouchetii. Higher occurrence of P. pouchetii in the Arctic Ocean has previously been related to northward advection of warmer Atlantic waters, which is expected to increase in the future. Our study highlights the role of plankton key species in driving climate relevant processes; thus, changes in plankton distribution need to be accounted for when estimating the ocean's biogeochemical response to global change.

4.
Front Microbiol ; 8: 65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197132

RESUMO

Carbohydrates represent an important fraction of labile and semi-labile marine organic matter that is mainly comprised of exopolymeric substances derived from phytoplankton exudation and decay. This study investigates the composition of total combined carbohydrates (tCCHO; >1 kDa) and the community development of free-living (0.2-3 µm) and particle-associated (PA) (3-10 µm) bacterioplankton during a spring phytoplankton bloom in the southern North Sea. Furthermore, rates were determined for the extracellular enzymatic hydrolysis that catalyzes the initial step in bacterial organic matter remineralization. Concentrations of tCCHO greatly increased during bloom development, while the composition showed only minor changes over time. The combined concentration of glucose, galactose, fucose, rhamnose, galactosamine, glucosamine, and glucuronic acid in tCCHO was a significant factor shaping the community composition of the PA bacteria. The richness of PA bacteria greatly increased in the post-bloom phase. At the same time, the increase in extracellular ß-glucosidase activity was sufficient to explain the observed decrease in tCCHO, indicating the efficient utilization of carbohydrates by the bacterioplankton community during the post-bloom phase. Our results suggest that carbohydrate concentration and composition are important factors in the multifactorial environmental control of bacterioplankton succession and the enzymatic hydrolysis of organic matter during phytoplankton blooms.

5.
Sci Rep ; 7(1): 16722, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196721

RESUMO

In marine oxygen (O2) minimum zones (OMZs), the transfer of particulate organic carbon (POC) to depth via the biological carbon pump might be enhanced as a result of slower remineralisation under lower dissolved O2 concentrations (DO). In parallel, nitrogen (N) loss to the atmosphere through microbial processes, such as denitrification and anammox, is directly linked to particulate nitrogen (PN) export. However it is unclear (1) whether DO is the only factor that potentially enhances POC transfer in OMZs, and (2) if particle fluxes are sufficient to support observed N loss rates. We performed a degradation experiment on sinking particles collected from the Baltic Sea, where anoxic zones are observed. Sinking material was harvested using surface-tethered sediment traps and subsequently incubated in darkness at different DO levels, including severe suboxia (<0.5 mg l-1 DO). Our results show that DO plays a role in regulating POC and PN degradation rates. POC(PN) degradation was reduced by approximately 100% from the high to low DO to the lowest DO. The amount of NH4+ produced from the pool of remineralising organic N matched estimations of NH4+ anammox requirements during our experiment. This anammox was likely fueled by DON degradation rather than PON degradation.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Oxigênio/metabolismo , Carbono/metabolismo , Desnitrificação , Monitoramento Ambiental , Nitrogênio/metabolismo , Oceanos e Mares , Microbiologia da Água
6.
Sci Rep ; 6: 29465, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435531

RESUMO

The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA