Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Artif Intell ; 7: 1406773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881954

RESUMO

The article addresses the accelerating human-machine interaction using the large language model (LLM). It goes beyond the traditional logical paradigms of explainable artificial intelligence (XAI) by considering poor-formalizable cognitive semantical interpretations of LLM. XAI is immersed in a hybrid space, where humans and machines have crucial distinctions during the digitisation of the interaction process. The author's convergent methodology ensures the conditions for making XAI purposeful and sustainable. This methodology is based on the inverse problem-solving method, cognitive modeling, genetic algorithm, neural network, causal loop dynamics, and eigenform realization. It has been shown that decision-makers need to create unique structural conditions for information processes, using LLM to accelerate the convergence of collective problem solving. The implementations have been carried out during the collective strategic planning in situational centers. The study is helpful for the advancement of explainable LLM in many branches of economy, science and technology.

2.
IEEE Trans Neural Netw ; 19(6): 1033-60, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18541503

RESUMO

The learning capability of neural networks is equivalent to modeling physical events that occur in the real environment. Several early works have demonstrated that neural networks belonging to some classes are universal approximators of input-output deterministic functions. Recent works extend the ability of neural networks in approximating random functions using a class of networks named stochastic neural networks (SNN). In the language of system theory, the approximation of both deterministic and stochastic functions falls within the identification of nonlinear no-memory systems. However, all the results presented so far are restricted to the case of Gaussian stochastic processes (SPs) only, or to linear transformations that guarantee this property. This paper aims at investigating the ability of stochastic neural networks to approximate nonlinear input-output random transformations, thus widening the range of applicability of these networks to nonlinear systems with memory. In particular, this study shows that networks belonging to a class named non-Gaussian stochastic approximate identity neural networks (SAINNs) are capable of approximating the solutions of large classes of nonlinear random ordinary differential transformations. The effectiveness of this approach is demonstrated and discussed by some application examples.


Assuntos
Redes Neurais de Computação , Dinâmica não Linear , Reconhecimento Automatizado de Padrão , Processos Estocásticos , Humanos , Idioma , Distribuição Normal , Reconhecimento Fisiológico de Modelo/fisiologia , Voz/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA