Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Immunity ; 50(2): 432-445.e7, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30683619

RESUMO

Host microbial cross-talk is essential to maintain intestinal homeostasis. However, maladaptation of this response through microbial dysbiosis or defective host defense toward invasive intestinal bacteria can result in chronic inflammation. We have shown that macrophages differentiated in the presence of the bacterial metabolite butyrate display enhanced antimicrobial activity. Butyrate-induced antimicrobial activity was associated with a shift in macrophage metabolism, a reduction in mTOR kinase activity, increased LC3-associated host defense and anti-microbial peptide production in the absence of an increased inflammatory cytokine response. Butyrate drove this monocyte to macrophage differentiation program through histone deacetylase 3 (HDAC3) inhibition. Administration of butyrate induced antimicrobial activity in intestinal macrophages in vivo and increased resistance to enteropathogens. Our data suggest that (1) increased intestinal butyrate might represent a strategy to bolster host defense without tissue damaging inflammation and (2) that pharmacological HDAC3 inhibition might drive selective macrophage functions toward antimicrobial host defense.


Assuntos
Anti-Infecciosos/farmacologia , Butiratos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Diferenciação Celular/genética , Células Cultivadas , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Citocinas/genética , Citocinas/metabolismo , Disbiose/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Monócitos/metabolismo , Monócitos/microbiologia
2.
Gastroenterology ; 162(3): 859-876, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34780721

RESUMO

BACKGROUND & AIMS: Monogenic forms of inflammatory bowel disease (IBD) illustrate the essential roles of individual genes in pathways and networks safeguarding immune tolerance and gut homeostasis. METHODS: To build a taxonomy model, we assessed 165 disorders. Genes were prioritized based on penetrance of IBD and disease phenotypes were integrated with multi-omics datasets. Monogenic IBD genes were classified by (1) overlapping syndromic features, (2) response to hematopoietic stem cell transplantation, (3) bulk RNA-sequencing of 32 tissues, (4) single-cell RNA-sequencing of >50 cell subsets from the intestine of healthy individuals and patients with IBD (pediatric and adult), and (5) proteomes of 43 immune subsets. The model was validated by addition of newly identified monogenic IBD defects. As a proof-of-concept, we explore the intersection between immunometabolism and antimicrobial activity for a group of disorders (G6PC3/SLC37A4). RESULTS: Our quantitative integrated taxonomy defines the cellular landscape of monogenic IBD gene expression across 102 genes with high and moderate penetrance (81 in the model set and 21 genes in the validation set). We illustrate distinct cellular networks, highlight expression profiles across understudied cell types (e.g., CD8+ T cells, neutrophils, epithelial subsets, and endothelial cells) and define genotype-phenotype associations (perianal disease and defective antimicrobial activity). We illustrate processes and pathways shared across cellular compartments and phenotypic groups and highlight cellular immunometabolism with mammalian target of rapamycin activation as one of the converging pathways. There is an overlap of genes and enriched cell-specific expression between monogenic and polygenic IBD. CONCLUSION: Our taxonomy integrates genetic, clinical and multi-omic data; providing a basis for genomic diagnostics and testable hypotheses for disease functions and treatment responses.


Assuntos
Doenças Inflamatórias Intestinais/classificação , Doenças Inflamatórias Intestinais/genética , Idade de Início , Antiporters/genética , Células Cultivadas , Classificação , Perfilação da Expressão Gênica , Estudos de Associação Genética , Genótipo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfato/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos , Metabolômica , Proteínas de Transporte de Monossacarídeos/genética , Penetrância , Fenótipo , Transdução de Sinais/genética
3.
Proc Natl Acad Sci U S A ; 117(37): 23140-23147, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868422

RESUMO

In higher plants, molecular responses to exogenous hypoxia are driven by group VII ethylene response factors (ERF-VIIs). These transcriptional regulators accumulate in the nucleus under hypoxia to activate anaerobic genes but are destabilized in normoxic conditions through the action of oxygen-sensing plant cysteine oxidases (PCOs). The PCOs catalyze the reaction of oxygen with the conserved N-terminal cysteine of ERF-VIIs to form cysteine sulfinic acid, triggering degradation via the Cys/Arg branch of the N-degron pathway. The PCOs are therefore a vital component of the plant oxygen signaling system, connecting environmental stimulus with cellular and physiological response. Rational manipulation of PCO activity could regulate ERF-VII levels and improve flood tolerance, but requires detailed structural information. We report crystal structures of the constitutively expressed PCO4 and PCO5 from Arabidopsis thaliana to 1.24 and 1.91 Å resolution, respectively. The structures reveal that the PCOs comprise a cupin-like scaffold, which supports a central metal cofactor coordinated by three histidines. While this overall structure is consistent with other thiol dioxygenases, closer inspection of the active site indicates that other catalytic features are not conserved, suggesting that the PCOs may use divergent mechanisms to oxidize their substrates. Conservative substitution of two active site residues had dramatic effects on PCO4 function both in vitro and in vivo, through yeast and plant complementation assays. Collectively, our data identify key structural elements that are required for PCO activity and provide a platform for engineering crops with improved hypoxia tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigênio/metabolismo , Cisteína Dioxigenase/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredução , Transdução de Sinais/fisiologia , Fatores de Transcrição
4.
J Proteome Res ; 20(11): 5212-5217, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34582218

RESUMO

We analyzed a red paint sample from the surface of a gold mask excavated from a Middle Sicán elite tomb in Peru. The mask covered the face of the principal male and dates from ca. 1000 AD, a period when many painted precious metal objects were produced. The paint's inorganic pigment was identified more than 30 years ago as cinnabar (a mercuric sulfide scarlet-red to brown-red mineral), but the identity of the effective organic binder remained a mystery. Fourier transform infrared (FTIR) analysis of the sample indicated a proteinaceous composition, and no lipids were recovered from an N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) derivatized extract of the sample analyzed by gas chromatography-mass spectrometry (GC-MS). Proteomics analysis by nanoLC-MS/MS identified unique peptides in the sample, which were matched to human blood and bird egg proteins via Uniprot database searches. These included immunoglobulin heavy chain, immunoglobulin G, serum albumin, and ovomucoid. Cinnabar-based paints were typically used in the context of social elites and ritually important items. The presence of human blood would support previous ideas that red cinnabar paint may represent "life force" intended to support "rebirth". As the red paint sample came from the first scientifically excavated Sicán gold mask, the results suggest a method to authenticate similar unprovenanced masks now in private and museum collections. Proteomics data set identifier https://doi.org/10.5287/bodleian:1ajYbBgQP.


Assuntos
Proteínas Aviárias , Animais , Aves , Proteínas do Ovo , Ouro , Humanos , Masculino , Pintura/análise , Peru , Espectrometria de Massas em Tandem
5.
J Biol Chem ; 295(49): 16545-16561, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32934009

RESUMO

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.


Assuntos
Dictyostelium/enzimologia , Prolil Hidroxilases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cinética , Simulação de Dinâmica Molecular , Oxigênio/metabolismo , Prolil Hidroxilases/química , Prolil Hidroxilases/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Quinases Associadas a Fase S/química , Proteínas Quinases Associadas a Fase S/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
6.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641476

RESUMO

OBJECTIVES: The toxicity of chemotherapeutic anticancer drugs is a serious issue in clinics. Drug discovery from edible and medicinal plants represents a promising approach towards finding safer anticancer therapeutics. Justicia insularis T. Anderson (Acanthaceae) is an edible and medicinal plant in Nigeria. This study aims to discover cytotoxic compounds from this rarely explored J. insularis and investigate their underlying mechanism of action. METHODS: The cytotoxicity of the plant extract was evaluated in human ovarian cancer cell lines and normal human ovarian surface epithelia (HOE) cells using a sulforhodamine B assay. Bioassay-guided isolation was carried out using column chromatography including HPLC, and the isolated natural products were characterized using GC-MS, LC-HRMS, and 1D/2D NMR techniques. Induction of apoptosis was evaluated using Caspase 3/7, 8, and 9, and Annexin V and PI based flow cytometry assays. SwissADME and SwissTargetPrediction web tools were used to predict the molecular properties and possible protein targets of identified active compounds. Key finding: The two cytotoxic compounds were identified as clerodane diterpenoids: 16(α/ß)-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (1) and 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (2) from the Acanthaceous plant for the first time. Compound 1 was a very abundant compound (0.7% per dry weight of plant material) and was shown to be more potent than compound 2 with IC50 values in the micromolar range against OVCAR-4 and OVCAR-8 cancer cells. Compounds 1 and 2 were less cytotoxic to HOE cell line. Both compounds induced apoptosis by increasing caspase 3/7 activities in a concentration dependent manner. Compound 1 further increased caspase 8 and 9 activities and apoptosis cell populations. Compounds 1 and 2 are both drug like, and compound 1 may target various proteins including a kinase. CONCLUSIONS: Clerodane diterpenoids (1 and 2) in J. insularis were identified as cytotoxic to ovarian cancer cells via the induction of apoptosis, providing an abundant and valuable source of hit compounds for the treatment of ovarian cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos Clerodânicos/farmacologia , Justicia/química , Neoplasias Ovarianas/tratamento farmacológico , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Folhas de Planta/química , Células Tumorais Cultivadas
7.
J Biol Chem ; 294(30): 11637-11652, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31147442

RESUMO

JmjC domain-containing protein 6 (JMJD6) is a 2-oxoglutarate (2OG)-dependent oxygenase linked to various cellular processes, including splicing regulation, histone modification, transcriptional pause release, hypoxia sensing, and cancer. JMJD6 is reported to catalyze hydroxylation of lysine residue(s) of histones, the tumor-suppressor protein p53, and splicing regulatory proteins, including u2 small nuclear ribonucleoprotein auxiliary factor 65-kDa subunit (U2AF65). JMJD6 is also reported to catalyze N-demethylation of N-methylated (both mono- and di-methylated) arginine residues of histones and other proteins, including HSP70 (heat-shock protein 70), estrogen receptor α, and RNA helicase A. Here, we report MS- and NMR-based kinetic assays employing purified JMJD6 and multiple substrate fragment sequences, the results of which support the assignment of purified JMJD6 as a lysyl hydroxylase. By contrast, we did not observe N-methyl arginyl N-demethylation with purified JMJD6. Biophysical analyses, including crystallographic analyses of JMJD6Δ344-403 in complex with iron and 2OG, supported its assignment as a lysyl hydroxylase rather than an N-methyl arginyl-demethylase. The screening results supported some, but not all, of the assigned JMJD6 substrates and identified other potential JMJD6 substrates. We envision these results will be useful in cellular and biological work on the substrates and functions of JMJD6 and in the development of selective inhibitors of human 2OG oxygenases.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Catálise , Cristalografia por Raios X , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Humanos , Hidroxilação , Histona Desmetilases com o Domínio Jumonji/química , Cinética , Lisina/metabolismo , Conformação Proteica , Especificidade por Substrato
8.
Nat Chem Biol ; 14(10): 955-963, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30224694

RESUMO

Isotopic replacement has long-proven applications in small molecules. However, applications in proteins are largely limited to biosynthetic strategies or exchangeable (for example, N-H/D) labile sites only. The development of postbiosynthetic, C-1H → C-2H/D replacement in proteins could enable probing of mechanisms, among other uses. Here we describe a chemical method for selective protein α-carbon deuteration (proceeding from Cys to dehydroalanine (Dha) to deutero-Cys) allowing overall 1H→2H/D exchange at a nonexchangeable backbone site. It is used here to probe mechanisms of reactions used in protein bioconjugation. This analysis suggests, together with quantum mechanical calculations, stepwise deprotonations via on-protein carbanions and unexpected sulfonium ylides in the conversion of Cys to Dha, consistent with a 'carba-Swern' mechanism. The ready application on existing, intact protein constructs (without specialized culture or genetic methods) suggests this C-D labeling strategy as a possible tool in protein mechanism, structure, biotechnology and medicine.


Assuntos
Alanina/análogos & derivados , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteômica/métodos , Alanina/química , Sítios de Ligação , Cisteína/química , Medição da Troca de Deutério , Proteínas de Fluorescência Verde/química , Histonas/química , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Solventes/química
9.
Bioorg Chem ; 94: 103395, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733898

RESUMO

Firefly luciferase (FLuc) is a powerful tool for molecular and cellular biology, and popular in high-throughput screening and drug discovery. However, FLuc assays have been plagued with positive and negative artefacts due to stabilisation and inhibition by small molecules from a range of chemical classes. Here we disclose Phase II clinical compound SMT C1100 for the treatment of Duchenne muscular dystrophy as an FLuc inhibitor (KD of 0.40 ±â€¯0.15 µM). Enzyme kinetic studies using SMT C1100 and other non-competitive inhibitors including resveratrol and NFκBAI4 identified previously undescribed modes of inhibition with respect to FLuc's luciferyl adenylate intermediate. Employing a photoaffinity strategy to identify SMT C1100's binding site, a photolabelled SMT C1100 probe instead underwent FLuc-dependent photooxidation. Our findings support novel binding sites on FLuc for non-competitive inhibitors.


Assuntos
Benzoxazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Vaga-Lumes/enzimologia , Luciferases de Vaga-Lume/antagonistas & inibidores , Animais , Benzoxazóis/síntese química , Benzoxazóis/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Luciferases de Vaga-Lume/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
11.
Cancer Metab ; 12(1): 5, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350962

RESUMO

BACKGROUND: PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS: From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS: PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS: Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.

12.
Nat Microbiol ; 9(1): 214-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177296

RESUMO

Predatory bacteria, like the model endoperiplasmic bacterium Bdellovibrio bacteriovorus, show several adaptations relevant to their requirements for locating, entering and killing other bacteria. The mechanisms underlying prey recognition and handling remain obscure. Here we use complementary genetic, microscopic and structural methods to address this deficit. During invasion, the B. bacteriovorus protein CpoB concentrates into a vesicular compartment that is deposited into the prey periplasm. Proteomic and structural analyses of vesicle contents reveal several fibre-like proteins, which we name the mosaic adhesive trimer (MAT) superfamily, and show localization on the predator surface before prey encounter. These dynamic proteins indicate a variety of binding capabilities, and we confirm that one MAT member shows specificity for surface glycans from a particular prey. Our study shows that the B. bacteriovorus MAT protein repertoire enables a broad means for the recognition and handling of diverse prey epitopes encountered during bacterial predation and invasion.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/metabolismo , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
Proteomics ; 13(3-4): 686-709, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23335204

RESUMO

Regeneration is a complex cellular process that, rather than simply forming a scar following injury, the animal forms a new functional tissue. Regeneration is a widespread process among metazoa, although not uniformly. Planaria, starfish, and some worms can regenerate most of their body, whereas many other species can only regenerate parts of specific tissues or fail to accomplish a functional regrowth, as is the case of mammals CNS. Research in regenerative medicine will possibly culminate in the regeneration of organs/tissues originally not prone to this process. Despite the complexity of the interactions and regulatory systems involved, the variety of tissues and organs these cells differentiate into has so far impaired the success of direct transplantation to restore damaged tissues. For this reason, a study, at the molecular level of the regeneration mechanisms developed by different animal models is likely to provide answers to why these processes are not readily activated in mammals. Proteomic-based approaches are being recognized as extremely useful to study of regeneration events, also because there is a relevant contribution of posttranscriptional processes that involve frequently the occurrence of a broad range of PTMs. The present review focuses on the significant knowledge brought up by proteomics in diverse aspects of regeneration research on different animal models, tissues, and organs.


Assuntos
Regeneração Nervosa , Proteoma/metabolismo , Cicatrização , Animais , Humanos , Fígado/fisiologia , Músculo Esquelético/fisiologia , Proteômica , Regeneração , Medicina Regenerativa , Transplante de Células-Tronco
14.
Commun Chem ; 6(1): 12, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36698022

RESUMO

Formaldehyde (HCHO) is a potent electrophile that is toxic above threshold levels, but which is also produced in the nuclei of eukaryotic cells by demethylases. We report studies with the four canonical human histones revealing that histone H2B reacts with HCHO, including as generated by a histone demethylase, to give a stable product. NMR studies show that HCHO reacts with the N-terminal proline and associated amide of H2B to give a 5,5-bicyclic aminal that is relatively stable to competition with HCHO scavengers. While the roles of histone modification by this reaction require further investigation, we demonstrated the potential of N-terminal aminal formation to modulate protein function by conducting biochemical and cellular studies on the effects of HCHO on catalysis by 4-oxalocrotonate tautomerase, which employs a nucleophilic N-terminal proline. The results suggest that reactions of N-terminal residues with HCHO and other aldehydes have potential to alter protein function.

15.
Chem Sci ; 14(44): 12498-12505, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020377

RESUMO

Formaldehyde is a pollutant and human metabolite that is toxic at high concentrations. Biological studies on formaldehyde are hindered by its high reactivity and volatility, which make it challenging to deliver quantitatively to cells. Here, we describe the development and validation of a set of N-acyloxymethyl-phthalimides as cell-relevant formaldehyde delivery agents. These esterase-sensitive compounds were similarly or less inhibitory to human cancer cell growth than free formaldehyde but the lead compound increased intracellular formaldehyde concentrations, increased cellular levels of thymidine derivatives (implying increased formaldehyde-mediated carbon metabolism), induced formation of cellular DNA-protein cross-links and induced cell death in pancreatic cancer cells. Overall, our N-acyloxymethyl-phthalimides and control compounds provide an accessible and broadly applicable chemical toolkit for formaldehyde biological research and have potential as cancer therapeutics.

16.
Nat Cardiovasc Res ; 2: 1221-1245, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38500966

RESUMO

Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca2+, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of Pde9a and Mme, genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with ß-alanine buildup. Raising ß-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.

17.
J Am Chem Soc ; 134(24): 10299-305, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22642715

RESUMO

Protein modification has entered the limelight of chemical and biological sciences, since, by appending small molecules into proteins surfaces, fundamental biological and biophysical processes may be studied and even modulated in a physiological context. Herein we present a new strategy to modify the lysine's ε-amino group and the protein's N-terminal, based on the formation of stable iminoboronates in aqueous media. This functionality enables the stable and complete modification of these amine groups, which can be reversible upon the addition of fructose, dopamine, or glutathione. A detailed DFT study is also presented to rationalize the observed stability toward hydrolysis of the iminoboronate constructs.


Assuntos
Ácidos Borônicos/química , Iminas/química , Lisina/química , Proteínas/química , Dopamina/química , Frutose/química , Glutationa/química , Modelos Moleculares , Muramidase/química , Somatostatina/química
18.
Electrophoresis ; 33(24): 3764-78, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23161438

RESUMO

Echinoderms, as invertebrate deuterostomes, have amazing neuronal intrinsic growth aptitude triggered at any time point during the animal lifespan leading to successful functional tissue regrowth. This trait is known to be in opposition to their mammal close phylogenic relatives that have lost the ability to regenerate their central nervous system. Despite the promising nature of this intrinsic echinoderm trait, it was only recently that this complex biological event started to be unveiled. In the present study, a 2DE gel-based phosphoproteomics approach was used to investigate changes in starfish neuronal protein phosphorylation states at two different wound healing time-graded events following arm tip amputation, 48 h and 13 days. Among the resolved protein spots in 3.0-5.6 NL pH IEF strips, 190, 142, and 124 had a phosphoprotein signal in the control and the two injury experimental groups, respectively. Gel image analysis, highlighted 129 spots with an injury-related protein phosphorylation dynamics, several being exclusively phosphorylated in controls (72 spots), injured nerves (8 spots) or, showing significantly different phosphorylation ratios (37 spots). Within these, a total of 43 proteins were identified with MALDI-TOF/TOF. Altogether, several intervening proteins of important injury-signaling pathways that seem to be modulated through phosphorylation, were identified for the first time in starfish radial nerve cord early regeneration events. These include cytoskeleton re-organization toward the formation of the neuronal growth cones; cell membrane rearrangements, actin filaments, and microtubules dynamics; mRNA binding and transport; lipid signaling; Notch pathway; and neuropeptide processing.


Assuntos
Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Nervo Radial/fisiologia , Estrelas-do-Mar/fisiologia , Cicatrização/fisiologia , Animais , Eletroforese em Gel Bidimensional , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/química , Fosfoproteínas/análise , Fosfoproteínas/química , Fosforilação , Proteoma/análise , Proteoma/química , Proteômica/métodos , Nervo Radial/metabolismo , Estrelas-do-Mar/metabolismo
19.
Sci Rep ; 12(1): 4579, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301348

RESUMO

Silk has been a luxurious commodity throughout modern human history and sericulture has played an important role in ancient global trade as well as technological and cultural developments. Archaeological findings suggest that prior to domestication of the mulberry silkworm (Bombyx mori) silks were obtained from a range of silk-producing moth species with regional specificity. However, investigating the origins of sericulture is difficult as classification of silks by species-type has proved technically challenging. We therefore investigated a range of methods for solubilising modern and archaeological silks and developed a mass spectrometry-based proteomics method that was able to successfully differentiate modern Bombyx, Antheraea, and Samia-produced silks down to the species level. We subsequently analysed archaeological silk materials excavated from the ancient city of Palmyra. Solubilisation behaviour and proteomic analysis provided evidence that the Palmyra silks were constructed from wild silk derived from Antheraea mylitta, the Indian Tasar silkworm. We believe this is the first species-level biochemical evidence that supports archaeological theories about the production and trade of Indian wild silks in antiquity.


Assuntos
Bombyx , Mariposas , Animais , Bombyx/metabolismo , Espectrometria de Massas , Mariposas/metabolismo , Proteômica , Seda/química
20.
ACS Bio Med Chem Au ; 2(5): 521-528, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36281301

RESUMO

All aerobic organisms require O2 for survival. When their O2 is limited (hypoxia), a response is required to reduce demand and/or improve supply. A hypoxic response mechanism has been identified in flowering plants: the stability of certain proteins with N-terminal cysteine residues is regulated in an O2-dependent manner by the Cys/Arg branch of the N-degron pathway. These include the Group VII ethylene response factors (ERF-VIIs), which can initiate adaptive responses to hypoxia. Oxidation of their N-terminal cysteine residues is catalyzed by plant cysteine oxidases (PCOs), destabilizing these proteins in normoxia; PCO inactivity in hypoxia results in their stabilization. Biochemically, the PCOs are sensitive to O2 availability and can therefore act as plant O2 sensors. It is not known whether oxygen-sensing mechanisms exist in other phyla from the plant kingdom. Known PCO targets are only conserved in flowering plants, however PCO-like sequences appear to be conserved in all plant species. We sought to determine whether PCO-like enzymes from the liverwort, Marchantia polymorpha (MpPCO), and the freshwater algae, Klebsormidium nitens (KnPCO), have a similar function as PCO enzymes from Arabidopsis thaliana. We report that MpPCO and KnPCO show O2-sensitive N-terminal cysteine dioxygenase activity toward known AtPCO ERF-VII substrates as well as a putative endogenous substrate, MpERF-like, which was identified by homology to the Arabidopsis ERF-VIIs transcription factors. This work confirms functional and O2-dependent PCOs from Bryophyta and Charophyta, indicating the potential for PCO-mediated O2-sensing pathways in these organisms and suggesting PCO O2-sensing function could be important throughout the plant kingdom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA