Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell Physiol Biochem ; 58(1): 63-82, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374715

RESUMO

BACKGROUND/AIMS: Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear. METHODS: To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis in vitro : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs. RESULTS: All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>. CONCLUSION: Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.


Assuntos
Células Endoteliais , Desiminases de Arginina em Proteínas , Proteínas Proto-Oncogênicas c-akt , Humanos , Células Endoteliais/metabolismo , Histonas/metabolismo , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Amidinas/química , Amidinas/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia
2.
Cell Mol Life Sci ; 79(2): 94, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079870

RESUMO

Numerous post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.


Assuntos
Doenças Autoimunes/patologia , Citrulinação/fisiologia , Inflamação/patologia , Processamento de Proteína Pós-Traducional/fisiologia , Desiminases de Arginina em Proteínas/metabolismo , COVID-19/patologia , Citrulina/biossíntese , Metabolismo Energético/fisiologia , Armadilhas Extracelulares/imunologia , Regulação da Expressão Gênica/genética , Humanos , Neoplasias/patologia , SARS-CoV-2/imunologia , Tromboembolia/patologia
3.
Nutr Health ; : 2601060221124040, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114639

RESUMO

The relationship between body weight gain and the onset of obesity is linked to environmental and behavioral factors, and may be dependent on biological predisposing. Artificial neural networks are useful predictive tools in the field of artificial intelligence, and can be used to identify risk factors related to obesity. The aim of this study is to establish, based on artificial neural networks, a predictive model for overweight/obesity in children based on the recognition and selection of patterns associated with birth weight, gestational age, height deficit, food consumption, and the physical activity level, TV time and family context. Sample consisted of 149 children (72 = eutrophic and 77 = overweight/obese). Collected data consisted of anthropometry and demographic characteristics, gestational age, birth weight, food consumption, physical activity level, TV time and family context. The gestational age, daily caloric intake and birth weight were the main determinants of the later appearance of overweight and obesity. In addition, the family context linked to socioeconomic factors, such as the number of residents in the household, had a great impact on excess weight. The physical activity level was the least important variable. Modifiable risk factors, such as the inadequate food consumption, and non-modifiable factors such as gestational age were the main determinants for overweight/obesity in children. Our data indicate that, combating excess weight should also be carried out from a social and preventive perspective during critical periods of development, such as pregnancy, lactation and early childhood, to reach a more effective strategy to combat obesity and its complications in childhood and adult life.

4.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498891

RESUMO

For many years, it has been clear that a Western diet rich in saturated fats and sugars promotes an inflammatory environment predisposing a person to chronic cardiometabolic diseases. In parallel, the emergence of ketogenic diets, deprived of carbohydrates and promoting the synthesis of ketone bodies imitating the metabolic effects of fasting, has been shown to provide a possible nutritional solution to alleviating diseases triggered by an inflammatory environment. The main ketone body, ß-hydroxybutyrate (BHB), acts as an alternative fuel, and also as a substrate for a novel histone post-translational modification, ß-hydroxybutyrylation. ß-hydroxybutyrylation influences the state of chromatin architecture and promotes the transcription of multiple genes. BHB has also been shown to modulate inflammation in chronic diseases. In this review, we discuss, in the pathological context of cardiovascular risks, the current understanding of how ketone bodies, or a ketogenic diet, are able to modulate, trigger, or inhibit inflammation and how the epigenome and chromatin remodeling may be a key contributor.


Assuntos
Dieta Cetogênica , Corpos Cetônicos , Humanos , Corpos Cetônicos/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Epigenômica , Inflamação
5.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283668

RESUMO

Tumors require a constant supply of nutrients to grow which are provided through tumor blood vessels. To metastasize, tumors need a route to enter circulation, that route is also provided by tumor blood vessels. Thus, angiogenesis is necessary for both tumor progression and metastasis. Angiogenesis is tightly regulated by a balance of angiogenic and antiangiogenic factors. Angiogenic factors of the vascular endothelial growth factor (VEGF) family lead to the activation of endothelial cells, proliferation, and neovascularization. Significant VEGF-A upregulation is commonly observed in cancer cells, also due to hypoxic conditions, and activates endothelial cells (ECs) by paracrine signaling stimulating cell migration and proliferation, resulting in tumor-dependent angiogenesis. Conversely, antiangiogenic factors inhibit angiogenesis by suppressing ECs activation. One of the best-known anti-angiogenic factors is thrombospondin-1 (TSP-1). In pathological angiogenesis, the balance shifts towards the proangiogenic factors and an angiogenic switch that promotes tumor angiogenesis. Here, we review the current literature supporting the notion of the existence of two different endothelial lineages: normal endothelial cells (NECs), representing the physiological form of vascular endothelium, and tumor endothelial cells (TECs), which are strongly promoted by the tumor microenvironment and are biologically different from NECs. The angiogenic switch would be also important for the explanation of the differences between NECs and TECs, as angiogenic factors, cytokines and growth factors secreted into the tumor microenvironment may cause genetic instability. In this review, we focus on the epigenetic differences between the two endothelial lineages, which provide a possible window for pharmacological targeting of TECs.


Assuntos
Células Endoteliais/metabolismo , Epigênese Genética , Epigenoma , Neoplasias/genética , Neoplasias/metabolismo , Animais , Biomarcadores Tumorais , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transcriptoma
6.
Pharmacol Res ; 128: 252-263, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29113759

RESUMO

Epigenetic mechanisms, including histone post-translational modifications, are central regulators of cell cycle control. The euchromatic G9a histone methyltransferase (G9a HMT) is a key enzyme catalyzing histone H3 methylation on lysines 9 and 27, and its dysregulation has been linked to uncontrolled proliferation of tumor cells. Here, we have investigated the effect of G9a HMT silencing on cell proliferation of microvascular endothelial cells, a process necessary to sustain tumor growth through the formation of the vascular capillary network. Inhibition of G9a HMT activity in human microvascular endothelial cells (HMEC-1) was performed either pharmacologically, by treatment of cells with BIX-01294 or chaetocin, or transcriptionally, using shRNA. Cell viability and proliferation were examined using the resazurin reduction assay, flow cytometry and immunostaining of phosphorylated checkpoint kinase 1 (pSer317Chk1). Expression of cell cycle- and redox homeostasis-related genes was determined by quantitative PCR. Reactive oxygen species production was measured by oxidation of the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate and the cell's total antioxidant capacity by using the ABTS assay. Inhibition of G9a HMT activity by BIX-01294 treatment or by shRNA attenuated the proliferation of HMEC-1, nuclear localization of phosphorylated Chk1, and induced cell cycle arrest in G1 phase. Transcriptional analysis demonstrated increased gene expression of the cyclin-dependent kinase (CDK) inhibitor p21, and also of Rb1, in BIX-01294 treated cells. Decreased proliferation rate was accompanied by enhanced antioxidant potential of HMEC-1 cells, as demonstrated by reduced production of reactive oxygen species, increased total antioxidant capacity and expression of the antioxidant enzymes catalase and superoxide dismutase 1. Collectively, our results demonstrate of the central role of G9a HMT in the promotion of endothelial cells proliferation, and suggest that endothelial G9a HMT may be a target in the treatment of vascular proliferative disorders and tumor neovascularization.


Assuntos
Proliferação de Células/fisiologia , Células Endoteliais/fisiologia , Antígenos de Histocompatibilidade/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Microvasos/citologia , Azepinas/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Homeostase , Humanos , Oxirredução , Quinazolinas/farmacologia , RNA Interferente Pequeno/genética
7.
Exp Physiol ; 102(11): 1486-1499, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833822

RESUMO

NEW FINDINGS: What is the central question of this study? In the present study, a reproducible model of maternal voluntary physical activity was developed to evaluate the adaptive response of physical activity by attenuating the effects of maternal undernutrition on physical features, reflex ontogeny and growth trajectory of offspring during development. What is the main finding and its importance? Maternal physical activity may induce neuronal maturation of sensorimotor connections impacting on the patterns of locomotor activity in malnourished offspring. Thus, physical activity should be considered as a therapeutic means of countering the effects of maternal undernutrition, by providing a useful strategy for enhancing the neuronal activity of children born to mothers who experience a restricted diet during pregnancy. This study evaluated the effects of maternal voluntary physical activity during pregnancy and lactation on somatic growth (SG), reflex ontogeny (RO) and locomotor activity (LA) of rats whose mothers were protein restricted. Virgin female Wistar rats were divided into the following six groups: control, normal protein (C-NP, n = 4); control, low protein (C-LP, n = 4); inactive, normal protein (I-NP, n = 8); inactive, low protein (I-LP, n = 7); very active, normal protein (VA-NP, n = 8); and very active, low protein (VA-LP, n = 6). Voluntary physical activity was recorded daily in dams. The LP groups were fed an 8% casein diet, whereas control groups were fed a 17% casein diet during pregnancy and lactation. Offspring were evaluated in terms of SG (body weight and length, latero-lateral skull axis and anteroposterior head axis) and RO (palmar grasp, righting, free-fall righting, negative geotaxis, cliff avoidance, auditory startle response and vibrissa placing). The LA was evaluated at 23, 45 and 60 days old in the open field. Voluntary physical activity was reduced during pregnancy and lactation independent of the maternal diet. Pups from LP dams showed delayed SG, reflex maturation and patterns of LA when compared with control pups. The C-LP and I-LP pups showed a delayed SG, RO and LA. Pups from VA-LP mothers showed no delay in SG and RO and presented a faster development of patterns of LA. Maternal voluntary physical activity attenuated the effects of LP diet on indicators of neurodevelopment and patterns of LA of offspring.


Assuntos
Sistema Nervoso/crescimento & desenvolvimento , Transtornos do Neurodesenvolvimento/prevenção & controle , Condicionamento Físico Animal/métodos , Efeitos Tardios da Exposição Pré-Natal , Desnutrição Proteico-Calórica/fisiopatologia , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Idade Gestacional , Lactação , Fenômenos Fisiológicos da Nutrição Materna , Atividade Motora , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Estado Nutricional , Gravidez , Desnutrição Proteico-Calórica/complicações , Desnutrição Proteico-Calórica/psicologia , Ratos Wistar , Volição
8.
Diabetologia ; 59(12): 2645-2653, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27631137

RESUMO

AIMS/HYPOTHESIS: Despite the strong correlation between non-alcoholic fatty liver disease and insulin resistance, hepatic steatosis is associated with greater whole-body insulin sensitivity in several models. We previously reported that the inhibition of hepatic glucose production (HGP) protects against the development of obesity and diabetes despite severe steatosis, thanks to the secretion of specific hepatokines such as fibroblast growth factor 21 (FGF21) and angiopoietin-related growth factor. In this work, we focused on adipose tissue to assess whether liver metabolic fluxes might, by interorgan communication, control insulin signalling in lean animals. METHODS: Insulin signalling was studied in the adipose tissue of mice lacking the catalytic subunit of glucose 6-phosphatase, the key enzyme in endogenous glucose production, in the liver (L-G6pc -/- mice). Morphological and metabolic changes in the adipose tissues were characterised by histological analyses, gene expression and protein content. RESULTS: Mice lacking HGP exhibited improved insulin sensitivity of the phosphoinositide 3-kinase/Akt pathway in the subcutaneous adipose tissue associated with a browning of adipocytes. The suppression of HGP increased FGF21 levels in lean animals, and increased FGF21 was responsible for the metabolic changes in the subcutaneous adipose tissue but not for its greater insulin sensitivity. The latter might be linked to an increase in the ratio of monounsaturated to saturated fatty acids released by the liver. CONCLUSIONS: Our work provides evidence that HGP controls subcutaneous adipose tissue browning and insulin sensitivity through two pathways: the release of beneficial hepatokines and changes in hepatic fatty acids profile.


Assuntos
Glucose/metabolismo , Fígado/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Feminino , Insulina/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoglicerídeos/metabolismo , Gordura Subcutânea/metabolismo
9.
Gen Comp Endocrinol ; 232: 76-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26769588

RESUMO

Prenatal and early postnatal life determines future health, and intrauterine growth restriction (IUGR) - associated low birth weight predisposes to metabolic syndrome in adulthood. We hypothesize here that IUGR might induce hormonal and gene expression alterations predisposing to metabolic disease. Using a porcine model of spontaneous IUGR, we determined in utero (71, 112days post-conception) and early-postnatal (2days post-birth) IGF-1, insulin and leptin levels, and in parallel we investigated, in skeletal muscle, the developmental expression patterns of sirtuins and metabolic and signaling genes IRS1, GLUT4, HK2 and GAPDH. IUGR was associated with impaired IGF-1 plasmatic levels. Gene expression of sirtuin 1, 5, 6, 7, GLUT4 and HK2 exhibited significant correlations with gestational age or body weight. SIRT1 and HK2 expression displayed an age- and weight-dependent downregulation in controls, which was lost in IUGR pigs. Conversely, SIRT2 and GLUT4 were upregulated in IUGR pigs. Within the set of genes studied, we found a significant correlation between IGF-1 levels and gene expression in control, but not IUGR samples, indicating that lower IGF-1 may be a limiting factor in IUGR. IUGR-dependent gene alterations were partly linked to epigenetic changes on histone H3 acetylation and methylation. Overall, our data indicate that several sirtuins and metabolic genes display specific gene expression trajectories during fetal and early postnatal life. Gene expression alterations observed in IUGR are correlated to IGF-1 dysregulation. Given the importance of the genes studied in metabolic control, their perinatal alterations might contribute to the predisposition to metabolic disease of adulthood.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/fisiologia , Sirtuínas/metabolismo , Animais , Modelos Animais de Doenças , Epigênese Genética , Feminino , Gravidez , Suínos
10.
Clin Exp Pharmacol Physiol ; 43(12): 1177-1184, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27612187

RESUMO

Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (P<.05, t test). In addition, we observed that higher MDA levels were associated to decreased SOD (approximately 45%) and CAT (approximately 50%) activities in ventral medulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Hipertensão/metabolismo , Bulbo/metabolismo , Estresse Oxidativo/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transcrição Gênica/fisiologia , Animais , Feminino , Hipertensão/etiologia , Masculino , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Distribuição Aleatória , Ratos , Ratos Wistar
11.
Biochem Cell Biol ; 92(1): 61-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24471919

RESUMO

Besides its direct metabolic effects, insulin induces transcriptional alterations in its target tissues. However, whether such changes are accompanied by epigenetic changes on the chromatin template encompassing insulin responsive genes is unclear. Here, mRNA levels of insulin-responsive genes hexokinase 2 (Hk2), insulin receptor substrate (Irs2), and the PI3K subunit p85ß (Pik3r2) were compared in control versus insulin-stimulated L6 myotubes. Chromatin immunoprecipitation (ChIP) was performed with antibodies directed to histone H2A, histone variant H2A.Z, acetylated histone H3 on lysines 9/14, and acetylated H2A.Z. Insulin induced a more than 2-fold Hk2 mRNA increase, while Irs2 and Pik3r2 were downregulated. ChIP to H2A and H2A.Z showed higher H2A.Z accumulation around the transcriptional start site (TSS) of these insulin-modulated genes, while H2A.Z accumulation was lower distally to the TSS in the Hk2 promoter. H2A.Z levels and H3K9/14 acetylation correlated on several loci along the Hk2 gene, and H3K9/14 as well as H2A.Z acetylation was enhanced by insulin treatment. On the contrary, reduced H3K9/14 acetylation was observed in insulin-repressed Irs2 and Pik3r2, and recovery of acetylation by treatment with the histone deacetylase inhibitor trichostatin A reverted insulin-induced Irs2 downregulation. The chromatin regions encompassing selected insulin-responsive genes are thus featured by accumulation of H2A.Z around the TSS. H2A.Z accumulation facilitates insulin-dependent modulation of pharmacologically treatable H3K9/14 and H2A.Z acetylations. Indeed, inhibition of histone deacetylases by TSA treatment reverted insulin induced Irs2 gene downregulation. Dysregulated histone acetylation may thus be potentially targeted with histone deacetylase inhibitors.


Assuntos
Histonas/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Sítio de Iniciação de Transcrição , Acetilação , Animais , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Regulação da Expressão Gênica , Hexoquinase/metabolismo , Histona Desacetilases/metabolismo , Humanos , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Ratos
12.
Genome Res ; 21(10): 1601-15, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21890681

RESUMO

Emerging evidence suggests that poor glycemic control mediates post-translational modifications to the H3 histone tail. We are only beginning to understand the dynamic role of some of the diverse epigenetic changes mediated by hyperglycemia at single loci, yet elevated glucose levels are thought to regulate genome-wide changes, and this still remains poorly understood. In this article we describe genome-wide histone H3K9/K14 hyperacetylation and DNA methylation maps conferred by hyperglycemia in primary human vascular cells. Chromatin immunoprecipitation (ChIP) as well as CpG methylation (CpG) assays, followed by massive parallel sequencing (ChIP-seq and CpG-seq) identified unique hyperacetylation and CpG methylation signatures with proximal and distal patterns of regionalization associative with gene expression. Ingenuity knowledge-based pathway and gene ontology analyses indicate that hyperglycemia significantly affects human vascular chromatin with the transcriptional up-regulation of genes involved in metabolic and cardiovascular disease. We have generated the first installment of a reference collection of hyperglycemia-induced chromatin modifications using robust and reproducible platforms that allow parallel sequencing-by-synthesis of immunopurified content. We uncover that hyperglycemia-mediated induction of genes and pathways associated with endothelial dysfunction occur through modulation of acetylated H3K9/K14 inversely correlated with methyl-CpG content.


Assuntos
Aorta/citologia , Células Endoteliais/metabolismo , Epigênese Genética , Hiperglicemia/genética , Acetilação , Acetiltransferases/metabolismo , Células Cultivadas , Cromossomos Humanos , Ilhas de CpG , Metilação de DNA , Diabetes Mellitus/genética , Angiopatias Diabéticas/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Análise de Sequência de DNA , Transcrição Gênica
13.
Artigo em Inglês | MEDLINE | ID: mdl-38945796

RESUMO

Obesity is often associated with adipose tissue (AT) inflammation and immune cell infiltration. Writing recently in Cell Reports, Liao et al. investigated the mechanisms of T cell infiltration of AT using single cell (sc)RNA-sequencing (RNA-seq), transplantation studies, in vitro co-cultures, and knock-out mice. They highlighted the crucial role of C-C motif chemokine ligand 5 (CCL5)-secreting adipose stem cells (ASCs), offering insights for potential therapies.

14.
Nutrients ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931197

RESUMO

(1) Background: Dysregulated serum amino acids (AA) are known to be associated with obesity and risk of Type 2 Diabetes (T2D) in adults, and recent studies support the same notion in the pubertal age. It is, however, unknown whether childhood overweight may already display alterations of circulating AA. (2) Methods: We used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-targeted metabolomics to determine plasma concentrations of AA and AA-related molecules in 36 children aged 7-12 years with normal weight or overweight. Clinical and anthropometric parameters were measured. (3) Results: Overweight in children is associated with an altered AA profile, with increased branched-chain amino acids (BCAA) and decreased glycine levels, with no clinically manifested metabolic conditions. Moreover, z-BMI was positively and negatively correlated with BCAA and glycine levels, respectively, even after adjustment for age and gender. We also found a correlation between the AA profile and clinical parameters such as lipids profile and glycemia. (4) Conclusions: A pattern of low glycine, and increased BCAA is correlated to z-BMI, total cholesterol, and triglycerides in overweight but otherwise healthy children. Our data suggest that, in childhood overweight, AA disturbances may precede other clinical parameters, thus providing an early indicator for the later development of metabolic disease.


Assuntos
Aminoácidos de Cadeia Ramificada , Aminoácidos , Glicina , Sobrepeso , Obesidade Infantil , Humanos , Criança , Feminino , Masculino , Glicina/sangue , Aminoácidos de Cadeia Ramificada/sangue , Aminoácidos/sangue , Sobrepeso/sangue , Obesidade Infantil/sangue , Índice de Massa Corporal , Espectrometria de Massas em Tandem , Cromatografia Líquida , Metabolômica/métodos , Triglicerídeos/sangue
15.
Biochimie ; 212: 48-59, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37068579

RESUMO

The discovery of leptin in the 1990s led to a reconsideration of adipose tissue (AT) as not only a fatty acid storage organ, but also a proper endocrine tissue. AT is indeed capable of secreting bioactive molecules called adipokines for white AT or batokines for brown/beige AT, which allow communication with numerous organs, especially brain, heart, liver, pancreas, and/or the vascular system. Adipokines exert pro or anti-inflammatory activities. An equilibrated balance between these two sets ensures homeostasis of numerous tissues and organs. During the development of obesity, AT remodelling leads to an alteration of its endocrine activity, with increased secretion of pro-inflammatory adipokines relative to the anti-inflammatory ones, as shown in the graphical abstract. Pro-inflammatory adipokines take part in the initiation of local and systemic inflammation during obesity and contribute to comorbidities associated to obesity, as detailed in the present review.


Assuntos
Adipocinas , Obesidade , Humanos , Tecido Adiposo , Tecido Adiposo Marrom , Tecido Adiposo Branco , Fígado
16.
Nutr Res ; 118: 104-115, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634306

RESUMO

The impact of diets high in saturated fatty acids in individuals who have undergone maternal protein restriction is not clear. Here, we tested the hypothesis that a saturated fatty acid-enriched hyperlipidic diet (HL) affects liver expression of genes of the redox balance and inflammatory pathway in postweaning rat offspring subjected to maternal protein restriction. Pregnant Wistar rats received either a control (C; 19% protein) or low protein (LP; 8% protein) diet during gestation and lactation. At weaning, pups received either C or HL diets up to 90 days of life. The LP+HL group showed an upregulation of transcription of peroxisome proliferator-activated receptor γ (+48%) and peroxisome proliferator-activated receptor γ coactivator α (+96%) compared with the LP+C group (P < .05), respectively. Similarly, gene expression of the markers of inflammation, nuclear factor-kappa B1 (+194%) and tumor necrosis factor-α (+192%), was enhanced (P < .05). Although other antioxidant enzymes were not modified in gene expression, catalase (CAT) was 66% higher in LP+HL compared with LP+C. In contrast, CAT protein content in the liver was 50% lower in LP groups compared with C, and superoxide dismutase 2 (SOD2) was twice as high in LP groups compared with C. Postweaning HL after maternal protein restriction induces hepatic metabolic adaptation characterized by enhanced oxidative stress, unbalanced expression in the antioxidant enzymes SOD1, SOD2 and CAT, and activation of inflammatory pathways but does not impact circulating markers of lipid metabolism and liver function.


Assuntos
Ácidos Graxos , Deficiência de Proteína , Gravidez , Feminino , Ratos , Animais , Ácidos Graxos/metabolismo , Ratos Wistar , Antioxidantes/metabolismo , PPAR gama/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Dieta com Restrição de Proteínas/efeitos adversos , Deficiência de Proteína/metabolismo
17.
J Biol Chem ; 286(25): 22609-21, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21525000

RESUMO

How phospholipase D (PLD) is involved in myogenesis remains unclear. At the onset of myogenic differentiation of L6 cells induced by the PLD agonist vasopressin in the absence of serum, mTORC1 complex was rapidly activated, as reflected by phosphorylation of S6 kinase1 (S6K1). Both the long (p85) and short (p70) S6K1 isoforms were phosphorylated in a PLD1-dependent way. Short rapamycin treatment specifically inhibiting mTORC1 suppressed p70 but not p85 phosphorylation, suggesting that p85 might be directly activated by phosphatidic acid. Vasopressin stimulation also induced phosphorylation of Akt on Ser-473 through PLD1-dependent activation of mTORC2 complex. In this model of myogenesis, mTORC2 had a positive role mostly unrelated to Akt activation, whereas mTORC1 had a negative role, associated with S6K1-induced Rictor phosphorylation. The PLD requirement for differentiation can thus be attributed to its ability to trigger via mTORC2 activation the phosphorylation of an effector that could be PKCα. Moreover, PLD is involved in a counter-regulation loop expected to limit the response. This study thus brings new insights in the intricate way PLD and mTOR cooperate to control myogenesis.


Assuntos
Diferenciação Celular , Mioblastos/citologia , Mioblastos/metabolismo , Fosfolipase D/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Arginina Vasopressina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas/metabolismo
18.
Biochem Pharmacol ; 206: 115346, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36384215

RESUMO

The ketogenic diet (KD), a high-fat, low-carbohydrate dietary approach that is based on the induction of extensive ketone bodies (KB) metabolism, is recently receiving a lot of attention due to its application as effective intervention for multiple metabolic disorders including cardiovascular diseases. Despite its already established clinical use, especially in the treatment of drug-resistant epilepsy, GLUT1 deficiency syndromes and, in selected cases, obesity; the systemic impact of is not yet fully understood. Here, we discuss the evidence for and against the application of ketogenic diets, or ketone bodies precursors, in the etiology of hypertension and endothelial cells dysfunction. We attempt to identify the benefits and potential risks of chronic use of the ketogenic diet, also considering the molecular effects that KB exerts at multiple levels.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Dieta Cetogênica , Hipertensão , Humanos , Corpos Cetônicos , Células Endoteliais
19.
Mol Metab ; 65: 101578, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995402

RESUMO

OBJECTIVE: The ketogenic diet (KD), characterized by very limited dietary carbohydrate intake and used as nutritional treatment for GLUT1-deficiency syndromes and pharmacologically refractory epilepsy, may promote weight loss and improve metabolic fitness, potentially alleviating the symptoms of osteoarthritis. Here, we have studied the effects of administration of a ketogenic diet in mice previously rendered obese by feeding a high fat diet (HFD) and submitted to surgical destabilization of the medial meniscus to mimic osteoarthritis. METHODS: 6-weeks old mice were fed an HFD for 10 weeks and then switched to a chow diet (CD), KD or maintained on a HFD for 8 weeks. Glycemia, ß-hydroxybutyrate (BHB), body weight and fat mass were compared among groups. In liver and kidney, protein expression and histone post-translational modifications were assessed by Western blot, and gene expression by quantitative Real-Time PCR. RESULTS: After a 10 weeks HDF feeding, administration for 8 weeks of a KD or CD induced a comparable weight loss and decrease in fat mass, with better glycemic normalization in the KD group. Histone ß-hydroxybutyrylation, but not histone acetylation, was increased in the liver and kidney of mice fed the KD and the rate-limiting ketogenic enzyme HMGCS2 was upregulated - at the gene and protein level - in liver and, to an even greater extent, in kidney. KD-induced HMGCS2 overexpression may be dependent on FGF21, whose gene expression was increased by KD in liver. CONCLUSIONS: Over a period of 8 weeks, KD is more effective than a chow diet to induce metabolic normalization. Besides acting as a fuel molecule, BHB may exert its metabolic effects through modulation of the epigenome - via histone ß-hydroxybutyrylation - and extensive transcriptional modulation in liver and kidney.


Assuntos
Dieta Cetogênica , Osteoartrite , Ácido 3-Hidroxibutírico/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Corpos Cetônicos/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Osteoartrite/metabolismo , Redução de Peso
20.
J Dev Orig Health Dis ; 12(3): 505-512, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32799949

RESUMO

Maternal protein restriction and physical activity can affect the interaction mother-placenta-fetus. This study quantified the gene expression of brain-derived neurotrophic factor (BDNF), neurothrophin 4, tyrosine kinase receptor B (TrkB/NTRK2), insulin-like growth factor (IGF-1), and insulin-like growth factor receptor (IGF-1r) in the different areas of mother's brain (hypothalamus, hippocampus, and cortex), placenta, and fetus' brain of rats. Female Wistar rats (n = 20) were housed in cages containing a running wheel for 4 weeks before gestation. According to the distance spontaneously traveled daily, rats were classified as inactive or active. During gestation, on continued access to the running wheel, active and inactive groups were randomized to receive normoprotein diet (18% protein) or a low-protein (LP) diet (8% protein). At day 20 of gestation, gene expression of neurotrophic factors was analyzed by quantitative polymerase chain reaction in different brain areas and the placenta. Dams submitted to a LP diet during gestation showed upregulation of IGF-1r and BDNF messenger RNA in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, and BDNF, NTRK2, IGF-1 and IGF-1r in the cortex. In the placenta, there was a downregulation of IGF-1. In the brain of pups from mothers on LP diet, IGF-1r and NTRK2 were downregulated. Voluntary physical activity attenuated the effects of LP diet on IGF-1r in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, IGF-1 in the placenta, and NTRK2 in the fetus' brain. In conclusion, both maternal protein restriction and spontaneous physical activity influence the gene expression of BDNF, NTRK2, IGF-1, and IGF-1r, with spontaneous physical activity being able to normalize in part the defects caused by protein restriction during pregnancy.


Assuntos
Encéfalo/metabolismo , Dieta com Restrição de Proteínas , Fenômenos Fisiológicos da Nutrição Materna , Fatores de Crescimento Neural/metabolismo , Placenta/metabolismo , Animais , Feminino , Masculino , Plasticidade Neuronal , Condicionamento Físico Animal , Placentação , Gravidez , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA