Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36772409

RESUMO

BACKGROUND AND OBJECTIVE: Mental workload (MWL) is a relevant construct involved in all cognitively demanding activities, and its assessment is an important goal in many research fields. This paper aims at evaluating the reproducibility and sensitivity of MWL assessment from EEG signals considering the effects of different electrode configurations and pre-processing pipelines (PPPs). METHODS: Thirteen young healthy adults were enrolled and were asked to perform 45 min of Simon's task to elicit a cognitive demand. EEG data were collected using a 32-channel system with different electrode configurations (fronto-parietal; Fz and Pz; Cz) and analyzed using different PPPs, from the simplest bandpass filtering to the combination of filtering, Artifact Subspace Reconstruction (ASR) and Independent Component Analysis (ICA). The reproducibility of MWL indexes estimation and the sensitivity of their changes were assessed using Intraclass Correlation Coefficient and statistical analysis. RESULTS: MWL assessed with different PPPs showed reliability ranging from good to very good in most of the electrode configurations (average consistency > 0.87 and average absolute agreement > 0.92). Larger fronto-parietal electrode configurations, albeit being more affected by the choice of PPPs, provide better sensitivity in the detection of MWL changes if compared to a single-electrode configuration (18 vs. 10 statistically significant differences detected, respectively). CONCLUSIONS: The most complex PPPs have been proven to ensure good reliability (>0.90) and sensitivity in all experimental conditions. In conclusion, we propose to use at least a two-electrode configuration (Fz and Pz) and complex PPPs including at least the ICA algorithm (even better including ASR) to mitigate artifacts and obtain reliable and sensitive MWL assessment during cognitive tasks.


Assuntos
Eletroencefalografia , Carga de Trabalho , Adulto , Humanos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Eletrodos
2.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616792

RESUMO

A high power setup for multichannel time-domain (TD) functional near infrared spectroscopy (fNIRS) measurements with high efficiency detection system was developed. It was fully characterized based on international performance assessment protocols for diffuse optics instruments, showing an improvement of the signal-to-noise ratio (SNR) with respect to previous analogue devices, and allowing acquisition of signals with sampling rate up to 20 Hz and source-detector distance up to 5 cm. A resting-state measurement on the motor cortex of a healthy volunteer was performed with an acquisition rate of 20 Hz at a 4 cm source-detector distance. The power spectrum for the cortical oxy- and deoxyhemoglobin is also provided.


Assuntos
Córtex Motor , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Razão Sinal-Ruído , Córtex Motor/diagnóstico por imagem
3.
Sensors (Basel) ; 21(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770320

RESUMO

Electroencephalography (EEG) and electromyography (EMG) are widespread and well-known quantitative techniques used for gathering biological signals at cortical and muscular levels, respectively. Indeed, they provide relevant insights for increasing knowledge in different domains, such as physical and cognitive, and research fields, including neuromotor rehabilitation. So far, EEG and EMG techniques have been independently exploited to guide or assess the outcome of the rehabilitation, preferring one technique over the other according to the aim of the investigation. More recently, the combination of EEG and EMG started to be considered as a potential breakthrough approach to improve rehabilitation effectiveness. However, since it is a relatively recent research field, we observed that no comprehensive reviews available nor standard procedures and setups for simultaneous acquisitions and processing have been identified. Consequently, this paper presents a systematic review of EEG and EMG applications specifically aimed at evaluating and assessing neuromotor performance, focusing on cortico-muscular interactions in the rehabilitation field. A total of 213 articles were identified from scientific databases, and, following rigorous scrutiny, 55 were analyzed in detail in this review. Most of the applications are focused on the study of stroke patients, and the rehabilitation target is usually on the upper or lower limbs. Regarding the methodological approaches used to acquire and process data, our results show that a simultaneous EEG and EMG acquisition is quite common in the field, but it is mostly performed with EMG as a support technique for more specific EEG approaches. Non-specific processing methods such as EEG-EMG coherence are used to provide combined EEG/EMG signal analysis, but rarely both signals are analyzed using state-of-the-art techniques that are gold-standard in each of the two domains. Future directions may be oriented toward multi-domain approaches able to exploit the full potential of combined EEG and EMG, for example targeting a wider range of pathologies and implementing more structured clinical trials to confirm the results of the current pilot studies.


Assuntos
Processamento de Sinais Assistido por Computador , Acidente Vascular Cerebral , Eletroencefalografia , Eletromiografia , Humanos
4.
Sensors (Basel) ; 18(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342097

RESUMO

Measurement of muscle oxidative metabolism is of interest for monitoring the training status in athletes and the rehabilitation process in patients. Time domain near infrared spectroscopy (TD NIRS) is an optical technique that allows the non-invasive measurement of the hemodynamic parameters in muscular tissue: concentrations of oxy- and deoxy-hemoglobin, total hemoglobin content, and tissue oxygen saturation. In this paper, we present a novel TD NIRS medical device for muscle oxidative metabolism. A custom-printed 3D probe, able to host optical elements for signal acquisition from muscle, was develop for TD NIRS in vivo measurements. The system was widely characterized on solid phantoms and during in vivo protocols on healthy subjects. In particular, we tested the in vivo repeatability of the measurements to quantify the error that we can have by repositioning the probe. Furthermore, we considered a series of acquisitions on different muscles that were not yet previously performed with this custom probe: a venous-arterial cuff occlusion of the arm muscle, a cycling exercise, and an isometric contraction of the vastus lateralis.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Exercício Físico , Humanos , Músculo Esquelético , Estresse Oxidativo , Oxigênio , Consumo de Oxigênio
5.
Healthcare (Basel) ; 11(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37628480

RESUMO

In clinical scenarios, the use of biomedical sensors, devices and multi-parameter assessments is fundamental to provide a comprehensive portrait of patients' state, in order to adapt and personalize rehabilitation interventions and support clinical decision-making. However, there is a huge gap between the potential of the multidomain techniques available and the limited practical use that is made in the clinical scenario. This paper reviews the current state-of-the-art and provides insights into future directions of multi-domain instrumental approaches in the clinical assessment of patients involved in neuromotor rehabilitation. We also summarize the main achievements and challenges of using multi-domain approaches in the assessment of rehabilitation for various neurological disorders affecting motor functions. Our results showed that multi-domain approaches combine information and measurements from different tools and biological signals, such as kinematics, electromyography (EMG), electroencephalography (EEG), near-infrared spectroscopy (NIRS), and clinical scales, to provide a comprehensive and objective evaluation of patients' state and recovery. This multi-domain approach permits the progress of research in clinical and rehabilitative practice and the understanding of the pathophysiological changes occurring during and after rehabilitation. We discuss the potential benefits and limitations of multi-domain approaches for clinical decision-making, personalized therapy, and prognosis. We conclude by highlighting the need for more standardized methods, validation studies, and the integration of multi-domain approaches in clinical practice and research.

6.
Front Physiol ; 13: 862207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450158

RESUMO

Brain plasticity and functional reorganization are mechanisms behind functional motor recovery of patients after an ischemic stroke. The study of resting-state motor network functional connectivity by means of EEG proved to be useful in investigating changes occurring in the information flow and find correlation with motor function recovery. In the literature, most studies applying EEG to post-stroke patients investigated the undirected functional connectivity of interacting brain regions. Quite recently, works started to investigate the directionality of the connections and many approaches or features have been proposed, each of them being more suitable to describe different aspects, e.g., direct or indirect information flow between network nodes, the coupling strength or its characteristic oscillation frequency. Each work chose one specific measure, despite in literature there is not an agreed consensus, and the selection of the most appropriate measure is still an open issue. In an attempt to shed light on this methodological aspect, we propose here to combine the information of direct and indirect coupling provided by two frequency-domain measures based on Granger's causality, i.e., the directed coherence (DC) and the generalized partial directed coherence (gPDC), to investigate the longitudinal changes of resting-state directed connectivity associated with sensorimotor rhythms α and ß, occurring in 18 sub-acute ischemic stroke patients who followed a rehabilitation treatment. Our results showed a relevant role of the information flow through the pre-motor regions in the reorganization of the motor network after the rehabilitation in the sub-acute stage. In particular, DC highlighted an increase in intra-hemispheric coupling strength between pre-motor and primary motor areas, especially in ipsi-lesional hemisphere in both α and ß frequency bands, whereas gPDC was more sensitive in the detection of those connection whose variation was mostly represented within the population. A decreased causal flow from contra-lesional premotor cortex towards supplementary motor area was detected in both α and ß frequency bands and a significant reinforced inter-hemispheric connection from ipsi to contra-lesional pre-motor cortex was observed in ß frequency. Interestingly, the connection from contra towards ipsilesional pre-motor area correlated with upper limb motor recovery in α band. The usage of two different measures of directed connectivity allowed a better comprehension of those coupling changes between brain motor regions, either direct or mediated, which mostly were influenced by the rehabilitation, revealing a particular involvement of the pre-motor areas in the cerebral functional reorganization.

7.
J Biomed Opt ; 27(7)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35701869

RESUMO

SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.


Assuntos
Laboratórios , Óptica e Fotônica , Imagens de Fantasmas , Reprodutibilidade dos Testes , Análise Espectral
8.
Biomed Opt Express ; 12(1): 571-587, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33659090

RESUMO

We propose a quantitative and systematic investigation of the differential pathlength factor (DPF) behavior for skeletal muscles and its dependence on different factors, such as the subcutaneous adipose tissue thickness (ATT), the variations of the tissue absorption (µa ) and reduced scattering (µ's ) coefficients, and the source-detector distance. A time domain (TD) NIRS simulation study is performed in a two-layer geometry mimicking a human skeletal muscle with an overlying adipose tissue layer. The DPF decreases when µa increases, while it increases when µ's increases. Moreover, a positive correlation between DPF and ATT is found. These results are supported by an in-vivo TD NIRS study on vastus lateralis and biceps brachii muscles of eleven subjects at rest, showing a high inter-subject and inter-muscle variability.

9.
PLoS One ; 16(6): e0253181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133454

RESUMO

The interest for Fused Deposition Modelling (FDM) in the field of Diffuse Optics (DO) is rapidly increasing. The most widespread FDM materials are polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS), thanks to their low cost and easiness-to-print. This is why, in this study, 3D printed samples of PLA and ABS materials were optically characterized in the range from the UV up to the IR wavelengths, in order to test their possible employment for probe construction in DO applications. To this purpose, measurements with Near Infrared Spectroscopy and Diffuse Correlation Spectroscopy techniques were considered. The results obtained show how the material employed for probe construction can negatively affect the quality of DO measurements.


Assuntos
Acrilonitrila , Butadienos , Elastômeros , Fenômenos Ópticos , Poliésteres , Impressão Tridimensional , Estirenos , Raios Infravermelhos , Espectroscopia de Luz Próxima ao Infravermelho , Raios Ultravioleta
10.
Biomed Opt Express ; 11(1): 240-250, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010513

RESUMO

In time-domain diffuse optical spectroscopy, the simultaneous acquisition of the time-of-flight distribution (DTOF) of photons traveling in a diffusive medium and of the instrument response function (IRF) is necessary to perform quantitative measurements of optical properties (absorption and reduced scattering coefficients) while taking into account the non-idealities of a real system (e.g. temporal resolution and time delays). The IRF acquisition can be a non-trivial and time-consuming operation that requires directly facing the injection and collection fibers. Since this operation is not always possible, a new IRF measurement scheme is here proposed where the IRF is acquired in reflectance geometry from a corrugate reflective surface. Validation measurements on a set of reference homogenous phantoms have been performed, resulting in an error in the optical properties estimation lower than 10% with respect to the typical IRF configuration. Thus, the proposed method proved to be a reliable approach that after a preliminary calibration can be exploited in a laboratory and clinical set-ups, leading to faster and more accurate measurements and reducing the operator-dependent performance.

11.
Med Phys ; 45(4): 1518-1528, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29415344

RESUMO

PURPOSE: To investigate the potential of texture analysis applied on T2-w and postcontrast T1-w images acquired before radiotherapy for prostate cancer (PCa) and 12 months after its completion in quantitatively characterizing local radiation effect on the muscular component of internal obturators, as organs potentially involved in urinary toxicity. METHODS: T2-w and postcontrast T1-w MR images were acquired at 1.5 T before treatment (MRI1) and at 12 months of follow-up (MRI2) in 13 patients treated with radiotherapy for PCa. Right and left internal obturator muscle contours were manually delineated upon MRI1 and then automatically propagated on MRI2 by an elastic registration method. Planning CT images were coregistered to both MRIs and dose maps were deformed accordingly. A high-dose region receiving >55 Gy and a low-dose region receiving <55 Gy were identified in each muscle volume. Eighteen textural features were extracted from each region of interest and differences between MRI1 and MRI2 were evaluated. RESULTS: A signal increase was highlighted in both T2-w and T1-w images in the portion of the obturators near the prostate, i.e., in the region receiving medium-high doses. A change in the spatial organization was identified, as an increase in homogeneity and a decrease in contrast and complexity, compatible with an inflammatory status. In particular, the region receiving medium-high doses presented more significant or, at least, stronger differences. CONCLUSIONS: Texture analysis applied on T1-w and T2-w MR images has demonstrated its ability in quantitative evaluating radiation-induced changes in obturator muscles after PCa radiotherapy.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Músculos/diagnóstico por imagem , Músculos/efeitos da radiação , Neoplasias da Próstata/radioterapia , Lesões por Radiação/diagnóstico por imagem , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA