Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO Rep ; 25(2): 876-901, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177925

RESUMO

FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.


Assuntos
DNA , Neoplasias , Humanos , DNA/química , Replicação do DNA , Instabilidade Genômica , Proteínas de Manutenção de Minicromossomo
2.
J Cell Physiol ; 236(8): 5664-5675, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33432587

RESUMO

Warsaw breakage syndrome (WABS), is caused by biallelic mutations of DDX11, a gene coding a DNA helicase. We have recently reported two affected sisters, compound heterozygous for a missense (p.Leu836Pro) and a frameshift (p.Lys303Glufs*22) variant. By investigating the pathogenic mechanism, we demonstrate the inability of the DDX11 p.Leu836Pro mutant to unwind forked DNA substrates, while retaining DNA binding activity. We observed the accumulation of patient-derived cells at the G2/M phase and increased chromosomal fragmentation after mitomycin C treatment. The phenotype partially overlaps with features of the Fanconi anemia cells, which shows not only genomic instability but also defective mitochondria. This prompted us to examine mitochondrial functionality in WABS cells and revealed an altered aerobic metabolism. This opens the door to the further elucidation of the molecular and cellular basis of an impaired mitochondrial phenotype and sheds light on this fundamental process in cell physiology and the pathogenesis of these diseases.


Assuntos
DNA Helicases/genética , Anemia de Fanconi/genética , Instabilidade Genômica/genética , Síndrome de Kearns-Sayre/metabolismo , Miopatias Mitocondriais/metabolismo , Anormalidades Múltiplas/genética , RNA Helicases DEAD-box/genética , DNA Helicases/metabolismo , Anemia de Fanconi/metabolismo , Genômica , Humanos , Síndrome de Kearns-Sayre/genética , Miopatias Mitocondriais/genética , Mutação/genética
3.
PLoS Genet ; 14(10): e1007622, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30303954

RESUMO

Establishment of sister chromatid cohesion is coupled to DNA replication, but the underlying molecular mechanisms are incompletely understood. DDX11 (also named ChlR1) is a super-family 2 Fe-S cluster-containing DNA helicase implicated in Warsaw breakage syndrome (WABS). Herein, we examined the role of DDX11 in cohesion establishment in human cells. We demonstrated that DDX11 interacts with Timeless, a component of the replication fork-protection complex, through a conserved peptide motif. The DDX11-Timeless interaction is critical for sister chromatid cohesion in interphase and mitosis. Immunofluorescence studies further revealed that cohesin association with chromatin requires DDX11. Finally, we demonstrated that DDX11 localises at nascent DNA by SIRF analysis. Moreover, we found that DDX11 promotes cohesin binding to the DNA replication forks in concert with Timeless and that recombinant purified cohesin interacts with DDX11 in vitro. Collectively, our results establish a critical role for the DDX11-Timeless interaction in coordinating DNA replication with sister chromatid cohesion, and have important implications for understanding the molecular basis of WABS.


Assuntos
Proteínas de Ciclo Celular/genética , Cromátides/genética , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Replicação do DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos/genética , RNA Helicases DEAD-box/metabolismo , DNA/genética , DNA/metabolismo , DNA Helicases/metabolismo , Instabilidade Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Síndrome
4.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802105

RESUMO

Several lines of evidence suggest the existence in the eukaryotic cells of a tight, yet largely unexplored, connection between DNA replication and sister chromatid cohesion. Tethering of newly duplicated chromatids is mediated by cohesin, an evolutionarily conserved hetero-tetrameric protein complex that has a ring-like structure and is believed to encircle DNA. Cohesin is loaded onto chromatin in telophase/G1 and converted into a cohesive state during the subsequent S phase, a process known as cohesion establishment. Many studies have revealed that down-regulation of a number of DNA replication factors gives rise to chromosomal cohesion defects, suggesting that they play critical roles in cohesion establishment. Conversely, loss of cohesin subunits (and/or regulators) has been found to alter DNA replication fork dynamics. A critical step of the cohesion establishment process consists in cohesin acetylation, a modification accomplished by dedicated acetyltransferases that operate at the replication forks. Defects in cohesion establishment give rise to chromosome mis-segregation and aneuploidy, phenotypes frequently observed in pre-cancerous and cancerous cells. Herein, we will review our present knowledge of the molecular mechanisms underlying the functional link between DNA replication and cohesion establishment, a phenomenon that is unique to the eukaryotic organisms.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Replicação do DNA/fisiologia , Fase G1/fisiologia , Telófase/fisiologia , Animais , Humanos , Coesinas
5.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669056

RESUMO

Warsaw breakage syndrome (WABS) is a genetic disorder characterized by sister chromatid cohesion defects, growth retardation, microcephaly, hearing loss and other variable clinical manifestations. WABS is due to biallelic mutations of the gene coding for the super-family 2 DNA helicase DDX11/ChlR1, orthologous to the yeast chromosome loss protein 1 (Chl1). WABS is classified in the group of "cohesinopathies", rare hereditary diseases that are caused by mutations in genes coding for subunits of the cohesin complex or protein factors having regulatory roles in the sister chromatid cohesion process. In fact, among the cohesion regulators, an important player is DDX11, which is believed to be important for the functional coupling of DNA synthesis and cohesion establishment at the replication forks. Here, we will review what is known about the molecular and cellular functions of human DDX11 and its role in WABS etiopathogenesis, even in light of recent findings on the role of cohesin and its regulator network in promoting chromatin loop formation and regulating chromatin spatial organization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Doenças Raras/metabolismo , Anormalidades Múltiplas/genética , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Cromátides/patologia , Cromatina/patologia , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , RNA Helicases DEAD-box/genética , Replicação do DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Mutação , Filogenia , Doenças Raras/congênito , Doenças Raras/enzimologia , Doenças Raras/fisiopatologia , Coesinas
6.
Nucleic Acids Res ; 44(2): 705-17, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26503245

RESUMO

We present evidence that Tim establishes a physical and functional interaction with DDX11, a super-family 2 iron-sulfur cluster DNA helicase genetically linked to the chromosomal instability disorder Warsaw breakage syndrome. Tim stimulates DDX11 unwinding activity on forked DNA substrates up to 10-fold and on bimolecular anti-parallel G-quadruplex DNA structures and three-stranded D-loop approximately 4-5-fold. Electrophoretic mobility shift assays revealed that Tim enhances DDX11 binding to DNA, suggesting that the observed stimulation derives from an improved ability of DDX11 to interact with the nucleic acid substrate. Surface plasmon resonance measurements indicate that DDX11 directly interacts with Tim. DNA fiber track assays with HeLa cells exposed to hydroxyurea demonstrated that Tim or DDX11 depletion significantly reduced replication fork progression compared to control cells; whereas no additive effect was observed by co-depletion of both proteins. Moreover, Tim and DDX11 are epistatic in promoting efficient resumption of stalled DNA replication forks in hydroxyurea-treated cells. This is consistent with the finding that association of the two endogenous proteins in the cell extract chromatin fraction is considerably increased following hydroxyurea exposure. Overall, our studies provide evidence that Tim and DDX11 physically and functionally interact and act in concert to preserve replication fork progression in perturbed conditions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sequência de Bases , Proteínas de Ciclo Celular/genética , RNA Helicases DEAD-box/genética , DNA/química , DNA/metabolismo , DNA Helicases/genética , Replicação do DNA/genética , Quadruplex G , Células HeLa/efeitos dos fármacos , Humanos , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico
7.
J Biol Chem ; 288(18): 12742-52, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23511638

RESUMO

The Tim-Tipin complex plays an important role in the S phase checkpoint and replication fork stability in metazoans, but the molecular mechanism underlying its biological function is poorly understood. Here, we present evidence that the recombinant human Tim-Tipin complex (and Tim alone) markedly enhances the synthetic activity of DNA polymerase ε. In contrast, no significant effect on the synthetic ability of human DNA polymerase α and δ by Tim-Tipin was observed. Surface plasmon resonance measurements and co-immunoprecipitation experiments revealed that recombinant DNA polymerase ε directly interacts with either Tim or Tipin. In addition, the results of DNA band shift assays suggest that the Tim-Tipin complex (or Tim alone) is able to associate with DNA polymerase ε bound to a 40-/80-mer DNA ligand. Our results are discussed in view of the molecular dynamics at the human DNA replication fork.


Assuntos
Proteínas de Transporte , DNA Polimerase II , DNA , Complexos Multiproteicos , Proteínas Nucleares , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , DNA/biossíntese , DNA/química , DNA/genética , DNA Polimerase II/química , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Proteínas de Ligação a DNA , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ressonância de Plasmônio de Superfície/métodos
8.
Biochem J ; 454(2): 333-43, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23750504

RESUMO

The eukaryotic DNA replication protein Mcm10 (mini-chromosome maintenance 10) associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Another essential component of the eukaryotic replication fork is Cdc45 (cell division cycle 45), which is required for both initiation and elongation of DNA replication. In the present study we characterize, for the first time, the physical and functional interactions of human Mcm10 and Cdc45. First we demonstrated that Mcm10 and Cdc45 interact in cell-free extracts. We then analysed the role of each of the Mcm10 domains: N-terminal, internal and C-terminal (NTD, ID and CTD respectively). We have detected a direct physical interaction between CTD and Cdc45 by both in vitro co-immunoprecipitation and surface plasmon resonance experiments. On the other hand, we have found that the interaction of the Mcm10 ID with Cdc45 takes place only in the presence of DNA. Furthermore, we found that the isolated ID and CTD domains are fully functional, retaining DNA-binding capability with a clear preference for bubble and fork structures, and that they both enhance Cdc45 DNA-binding affinity. The results of the present study demonstrate that human Mcm10 and Cdc45 directly interact and establish a mutual co-operation in DNA binding.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Modelos Moleculares , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sistema Livre de Células , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células HEK293 , Humanos , Imunoprecipitação , Cinética , Proteínas de Manutenção de Minicromossomo , Simulação de Acoplamento Molecular , Peso Molecular , Conformação de Ácido Nucleico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
9.
Front Mol Biosci ; 11: 1420691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993838

RESUMO

Conformational diseases, such as Alzheimer's, Parkinson's and Huntington's diseases as well as ataxias and fronto-temporal disorders, are part of common class of neurological disorders characterised by the aggregation and progressive accumulation of mutant proteins which display aberrant conformation. In particular, Huntington's disease (HD) is caused by mutations leading to an abnormal expansion in the polyglutamine (poly-Q) tract of the huntingtin protein (HTT), leading to the formation of inclusion bodies in neurons of affected patients. Furthermore, recent experimental evidence is challenging the conventional view of the disease by revealing the ability of mutant HTT to be transferred between cells by means of extracellular vesicles (EVs), allowing the mutant protein to seed oligomers involving both the mutant and wild type forms of the protein. There is still no successful strategy to treat HD. In addition, the current understanding of the biological processes leading to the oligomerization and aggregation of proteins bearing the poly-Q tract has been derived from studies conducted on isolated poly-Q monomers and oligomers, whose structural properties are still unclear and often inconsistent. Here we describe a standardised biochemical approach to analyse by isopycnic ultracentrifugation the oligomerization of the N-terminal fragment of mutant HTT. The dynamic range of our method allows one to detect large and heterogeneous HTT complexes. Hence, it could be harnessed for the identification of novel molecular determinants responsible for the aggregation and the prion-like spreading properties of HTT in the context of HD. Equally, it provides a tool to test novel small molecules or bioactive compounds designed to inhibit the aggregation of mutant HTT.

10.
J Biol Chem ; 287(6): 4121-8, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22147708

RESUMO

Cdc45 is an essential protein conserved in all eukaryotes and is involved both in the initiation of DNA replication and the progression of the replication fork. With GINS, Cdc45 is an essential cofactor of the Mcm2-7 replicative helicase complex. Despite its importance, no detailed information is available on either the structure or the biochemistry of the protein. Intriguingly, whereas homologues of both GINS and Mcm proteins have been described in Archaea, no counterpart for Cdc45 is known. Herein we report a bioinformatic analysis that shows a weak but significant relationship among eukaryotic Cdc45 proteins and a large family of phosphoesterases that has been described as the DHH family, including inorganic pyrophosphatases and RecJ ssDNA exonucleases. These enzymes catalyze the hydrolysis of phosphodiester bonds via a mechanism involving two Mn(2+) ions. Only a subset of the amino acids that coordinates Mn(2+) is conserved in Cdc45. We report biochemical and structural data on the recombinant human Cdc45 protein, consistent with the proposed DHH family affiliation. Like the RecJ exonucleases, the human Cdc45 protein is able to bind single-stranded, but not double-stranded DNA. Small angle x-ray scattering data are consistent with a model compatible with the crystallographic structure of the RecJ/DHH family members.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Replicação do DNA/fisiologia , Evolução Molecular , Exodesoxirribonucleases/genética , Modelos Moleculares , Diester Fosfórico Hidrolases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Humanos , Manganês/química , Manganês/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
11.
Subcell Biochem ; 50: 79-104, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20012578

RESUMO

Eukaryotic initiation of DNA replication is a tightly regulated process. In the yeasts, S-phase-specific cyclin Cdk1 complex as well as Dfb4-Cdc7 kinase phosphorylate the initiation factors Sld2 and Sld3. These factors form a ternary complex with another initiation factor Dbp11 in their phosphorylated state, and associate with the origin of replication. This complex mediates the loading of Cdc45. A second complex called GINS and consisting of Sld5 and Psf1, 2 and 3 is also loaded onto the origin during the initiation process, in an interdependent manner with the Sld2/Sld3/Dpb11 complex. Both complexes cooperate in the recruitment of the replicative DNA polymerases, thus executing the initiation and subsequent establishment of the replication fork. Cdc45 and GINS are essential, well-conserved factors that are retained at the elongating replication fork. They form a stable helicase complex with MCM2-7 and mediate its contact to the replicative DNA polymerases. In contrast, the Sld2/Sld3/Dpb11 complex critical for the initiation is not retained by the elongating replication fork. Sld2 displays limited homology to the amino-terminal region of RecQL4 helicase, which may represent its metazoan orthologue, whereas Sld3 homologues have been identified only in fungi. Dbp11 and its fission yeast homologue Cut5 are members of a large family of BRCT-containing proteins including human TopBP1 and fruit fly Mus101. Similar principles of regulation apply also to human initiation of DNA replication, despite obvious differences in the detailed mechanisms. The regulatory initiation cascade is intimately intertwined with the cell cycle apparatus as well as the checkpoint control.


Assuntos
Replicação do DNA , Animais , Células Eucarióticas , Evolução Molecular , Humanos , Fosforilação
12.
Genes (Basel) ; 12(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802088

RESUMO

DDX11/ChlR1 is a super-family two iron-sulfur cluster containing DNA helicase with roles in DNA replication and sister chromatid cohesion establishment, and general chromosome architecture. Bi-allelic mutations of the DDX11 gene cause a rare hereditary disease, named Warsaw breakage syndrome, characterized by a complex spectrum of clinical manifestations (pre- and post-natal growth defects, microcephaly, intellectual disability, heart anomalies and sister chromatid cohesion loss at cellular level) in accordance with the multifaceted, not yet fully understood, physiological functions of this DNA helicase. In the last few years, a possible role of DDX11 in the onset and progression of many cancers is emerging. Herein we summarize the results of recent studies, carried out either in tumoral cell lines or in xenograft cancer mouse models, suggesting that DDX11 may have an oncogenic role. The potential of DDX11 DNA helicase as a pharmacological target for novel anti-cancer therapeutic interventions, as inferred from these latest developments, is also discussed.


Assuntos
RNA Helicases DEAD-box/genética , DNA Helicases/genética , Instabilidade Genômica/genética , Neoplasias/genética , Animais , Humanos , Oncogenes/genética
13.
Nucleic Acids Res ; 36(10): 3235-43, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18417534

RESUMO

The Mini-Chromosome Maintenance (MCM) proteins are candidates of replicative DNA helicase in eukarya and archaea. Here we report a 2.8 A crystal structure of the N-terminal domain (residues 1-268) of the Sulfolobus solfataricus MCM (Sso MCM) protein. The structure reveals single-hexameric ring-like architecture, at variance from the protein of Methanothermobacter thermoautotrophicus (Mth). Moreover, the central channel in Sso MCM seems significantly narrower than the Mth counterpart, which appears to more favorably accommodate single-stranded DNA than double-stranded DNA, as supported by DNA-binding assays. Structural analysis also highlights the essential role played by the zinc-binding domain in the interaction with nucleic acids and allows us to speculate that the Sso MCM N-ter domain may function as a molecular clamp to grasp the single-stranded DNA passing through the central channel. On this basis possible DNA unwinding mechanisms are discussed.


Assuntos
Proteínas de Bactérias/química , DNA Helicases/química , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Methanobacteriaceae/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Deleção de Sequência , Homologia Estrutural de Proteína , Zinco/química
14.
Nat Commun ; 11(1): 4287, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855419

RESUMO

Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DDX11 is essential for sister chromatid cohesion and resistance to G4 stabilizers. We propose that DDX11 is a DNA helicase protecting against G4 induced double-stranded breaks and concomitant loss of cohesion, possibly at DNA replication forks.


Assuntos
Anormalidades Múltiplas/etiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Quadruplex G , Troca de Cromátide Irmã , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Proliferação de Células , RNA Helicases DEAD-box/química , DNA Helicases/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Estabilidade Proteica , Pseudogenes , RNA Helicases/genética , RNA Helicases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Síndrome , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Appl Clin Genet ; 12: 239-248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824187

RESUMO

Warsaw breakage syndrome (WABS) is a very rare recessive hereditary disease caused by mutations in the gene coding for the DNA helicase DDX11, involved in genome stability maintenance and sister cohesion establishment. Typical clinical features observed in WABS patients include growth retardation, facial dysmorphia, microcephaly, hearing loss due to cochlear malformations and, at cytological level, sister chromatid cohesion defects. Molecular bases of WABS have not yet been elucidated, due to lack of disease animal model systems and limited knowledge of the DDX11 physiological functions. However, WABS is considered to belong to the group of cohesinopathies, genetic disorders due to mutations of subunits or regulators of cohesin, the protein complex responsible for tethering sister chromatids from the time of their synthesis till they separate in mitosis. Recent evidences suggest that cohesin and its regulators have additional key roles in chromatin organization by promoting the formation of chromatin loops. This "non-canonical" function of cohesin is expected to impact gene transcription during cell differentiation and embryonic development and its dis-regulation, caused by mutation/loss of genes encoding cohesin subunits or regulators, could originate the developmental defects observed in cohesinopathies. Ethiopathogenesis of WABS is discussed in line with these recent findings and evidence of a possible role of DDX11 as a cohesin regulator.

16.
Biochem J ; 408(1): 87-95, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17683280

RESUMO

To protect their genetic material cells adopt different mechanisms linked to DNA replication, recombination and repair. Several proteins function at the interface of these DNA transactions. In the present study, we report on the identification of a novel archaeal DNA helicase. BlastP searches of the Sulfolobus solfataricus genome database allowed us to identify an open reading frame (SSO0112, 875 amino acid residues) having sequence similarity with the human RecQ5beta. The corresponding protein, termed Hel112 by us, was produced in Escherichia coli in soluble form, purified to homogeneity and characterized. Gel-filtration chromatography and glycerol-gradient sedimentation analyses revealed that Hel112 forms monomers and dimers in solution. Biochemical characterization of the two oligomeric species revealed that only the monomeric form has an ATP-dependent 3'-5' DNA-helicase activity, whereas, unexpectedly, both the monomeric and dimeric forms possess DNA strand-annealing capability. The Hel112 monomeric form is able to unwind forked and 3'-tailed DNA structures with high efficiency, whereas it is almost inactive on blunt-ended duplexes and bubble-containing molecules. This analysis reveals that S. solfataricus Hel112 shares some enzymatic features with the RecQ-like DNA helicases and suggests potential cellular functions of this protein.


Assuntos
DNA Helicases/metabolismo , DNA/metabolismo , Sulfolobus solfataricus/enzimologia , Trifosfato de Adenosina/metabolismo , Catálise , DNA Helicases/classificação , Dimerização , Hidrólise , Ligação Proteica , Especificidade por Substrato
17.
Genes (Basel) ; 9(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469382

RESUMO

DDX11/ChlR1 (Chl1 in yeast) is a DNA helicase involved in sister chromatid cohesion and in DNA repair pathways. The protein belongs to the family of the iron⁻sulphur cluster containing DNA helicases, whose deficiencies have been linked to a number of diseases affecting genome stability. Mutations of human DDX11 are indeed associated with the rare genetic disorder named Warsaw breakage syndrome, showing both chromosomal breakages and chromatid cohesion defects. Moreover, growing evidence of a potential role in oncogenesis further emphasizes the clinical relevance of DDX11. Here, we illustrate the biochemical and structural features of DDX11 and how it cooperates with multiple protein partners in the cell, acting at the interface of DNA replication/repair/recombination and sister chromatid cohesion to preserve genome stability.

18.
Sci Rep ; 7: 40188, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071757

RESUMO

GINS is a key component of eukaryotic replicative forks and is composed of four subunits (Sld5, Psf1, Psf2, Psf3). To explain the discrepancy between structural data from crystallography and electron microscopy (EM), we show that GINS is a compact tetramer in solution as observed in crystal structures, but also forms a double-tetrameric population, detectable by EM. This may represent an intermediate step towards the assembly of two replicative helicase complexes at origins, moving in opposite directions within the replication bubble. Reconstruction of the double-tetrameric form, combined with small-angle X-ray scattering data, allows the localisation of the B domain of the Psf1 subunit in the free GINS complex, which was not visible in previous studies and is essential for the formation of a functional replication fork.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Humanos , Microscopia Eletrônica , Modelos Moleculares , Multimerização Proteica , Espalhamento a Baixo Ângulo
19.
Nucleic Acids Res ; 32(17): 5223-30, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15459292

RESUMO

DNA primases are responsible for the synthesis of the short RNA primers that are used by the replicative DNA polymerases to initiate DNA synthesis on the leading- and lagging-strand at the replication fork. In this study, we report the purification and biochemical characterization of a DNA primase (Sso DNA primase) from the thermoacidophilic crenarchaeon Sulfolobus solfataricus. The Sso DNA primase is a heterodimer composed of two subunits of 36 kDa (small subunit) and 38 kDa (large subunit), which show sequence similarity to the eukaryotic DNA primase p60 and p50 subunits, respectively. The two polypeptides were co-expressed in Escherichia coli and purified as a heterodimeric complex, with a Stokes radius of about 39.2 A and a 1:1 stoichiometric ratio among its subunits. The Sso DNA primase utilizes poly-pyrimidine single-stranded DNA templates with low efficiency for de novo synthesis of RNA primers, whereas its synthetic function is specifically activated by thymine-containing synthetic bubble structures that mimic early replication intermediates. Interestingly, the Sso DNA primase complex is endowed with a terminal nucleotidyl-transferase activity, being able to incorporate nucleotides at the 3' end of synthetic oligonucleotides in a non-templated manner.


Assuntos
DNA Primase/metabolismo , Nucleotidiltransferases/metabolismo , Poli T/química , Sulfolobus/enzimologia , Trifosfato de Adenosina/metabolismo , DNA/química , DNA Primase/isolamento & purificação , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Oligorribonucleotídeos/biossíntese , Oligorribonucleotídeos/química , Poli T/metabolismo , RNA/biossíntese , Especificidade por Substrato , Moldes Genéticos
20.
Nucleic Acids Res ; 31(14): 4024-30, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12853619

RESUMO

Spontaneous damage to DNA as a result of deamination, oxidation and depurination is greatly accelerated at high temperatures. Hyperthermophilic microorganisms constantly exposed to temperatures exceeding 80 degrees C are endowed with powerful DNA repair mechanisms to maintain genome stability. Of particular interest is the processing of DNA lesions during replication, which can result in fixed mutations. The hyperthermophilic crenarchaeon Sulfolobus solfataricus has two functional DNA polymerases, PolB1 and PolY1. We have found that the replicative DNA polymerase PolB1 specifically recognizes the presence of the deaminated bases hypoxanthine and uracil in the template by stalling DNA polymerization 3-4 bases upstream of these lesions and strongly associates with oligonucleotides containing them. PolB1 also stops at 8-oxoguanine and is unable to bypass an abasic site in the template. PolY1 belongs to the family of lesion bypass DNA polymerases and readily bypasses hypoxanthine, uracil and 8-oxoguanine, but not an abasic site, in the template. The specific recognition of deaminated bases by PolB1 may represent an initial step in their repair while PolY1 may be involved in damage tolerance at the replication fork. Additionally, we reveal that the deaminated bases can be introduced into DNA enzymatically, since both PolB1 and PolY1 are able to incorporate the aberrant DNA precursors dUTP and dITP.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Sulfolobus/enzimologia , Proteínas Arqueais/metabolismo , Sequência de Bases , Ligação Competitiva , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinética , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA