Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurotrauma ; 41(11-12): 1364-1374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38279804

RESUMO

Traumatic brain injury (TBI) is a leading global cause of morbidity and mortality. Intracranial hypertension following moderate-to-severe TBI (m-sTBI) is a potentially modifiable secondary cerebral insult and one of the central therapeutic targets of contemporary neurocritical care. External ventricular drain (EVD) insertion is a common therapeutic intervention used to control intracranial hypertension and attenuate secondary brain injury. However, the optimal timing of EVD insertion in the setting of m-sTBI is uncertain and practice variation is widespread. Therefore, we aimed to assess if there is an association between timing of EVD placement and functional neurological outcome at 6 months post m-sTBI. We pooled individual patient data for all relevant harmonizable variables from the Erythropoietin in Traumatic Brain Injury (EPO-TBI) and Prophylactic Hypothermia Trial to Lessen Traumatic Brain Injury (POLAR) randomized control trials, and the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) Core Study version 3.0 and Australia-Europe NeuroTrauma Effectiveness Research in TBI (Oz-ENTER) prospective observational studies to create a combined dataset. The Glasgow Coma Scale (GCS) score was used to define TBI severity and we included all patients admitted to an intensive care unit with a GCS ≤12, who were 15 years or older and underwent EVD placement within 7 days of injury. We used hierarchical multi-variable logistic regression models to study the association between EVD insertion within 24 h of injury (early) compared with EVD insertion more than 24 h after injury (late) and 6-month functional neurological outcome measured using the Glasgow Outcome Score Extended (GOSE). In total, 2536 patients were assessed. Of these, 502 (20%) underwent early EVD insertion and 145 (6%) underwent late EVD insertion. Following adjustment for the IMPACT (International Mission for Prognosis and Analysis of Clinical Trials in TBI) score extended (Core + CT), sex, injury severity score, study and treatment site, patients receiving a late EVD had higher odds of death or severe disability (GOSE 1-4) at 6 months follow-up than those receiving an early EVD adjusted odds ratio; 95% confidence interval, 2.14; 1.22-3.76; p = 0.008. Our study suggests that in patients with m-sTBI where an EVD is needed, early (≤ 24 h post-injury) insertion may result in better long-term functional outcomes. This finding supports future prospective investigation in this area.


Assuntos
Lesões Encefálicas Traumáticas , Drenagem , Humanos , Lesões Encefálicas Traumáticas/cirurgia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Drenagem/métodos , Resultado do Tratamento , Recuperação de Função Fisiológica/fisiologia , Adulto Jovem , Estudos Prospectivos , Ventriculostomia/métodos , Escala de Coma de Glasgow , Hipertensão Intracraniana/etiologia , Fatores de Tempo
2.
J Neurotrauma ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38482818

RESUMO

In 2010, the National Institute of Neurological Disorders and Stroke (NINDS) created a set of common data elements (CDEs) to help standardize the assessment and reporting of imaging findings in traumatic brain injury (TBI). However, as opposed to other standardized radiology reporting systems, a visual overview and data to support the proposed standardized lexicon are lacking. We used over 4000 admission computed tomography (CT) scans of patients with TBI from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study to develop an extensive pictorial overview of the NINDS TBI CDEs, with visual examples and background information on individual pathoanatomical lesion types, up to the level of supplemental and emerging information (e.g., location and estimated volumes). We documented the frequency of lesion occurrence, aiming to quantify the relative importance of different CDEs for characterizing TBI, and performed a critical appraisal of our experience with the intent to inform updating of the CDEs. In addition, we investigated the co-occurrence and clustering of lesion types and the distribution of six CT classification systems. The median age of the 4087 patients in our dataset was 50 years (interquartile range, 29-66; range, 0-96), including 238 patients under 18 years old (5.8%). Traumatic subarachnoid hemorrhage (45.3%), skull fractures (37.4%), contusions (31.3%), and acute subdural hematoma (28.9%) were the most frequently occurring CT findings in acute TBI. The ranking of these lesions was the same in patients with mild TBI (baseline Glasgow Coma Scale [GCS] score 13-15) compared with those with moderate-severe TBI (baseline GCS score 3-12), but the frequency of occurrence was up to three times higher in moderate-severe TBI. In most TBI patients with CT abnormalities, there was co-occurrence and clustering of different lesion types, with significant differences between mild and moderate-severe TBI patients. More specifically, lesion patterns were more complex in moderate-severe TBI patients, with more co-existing lesions and more frequent signs of mass effect. These patients also had higher and more heterogeneous CT score distributions, associated with worse predicted outcomes. The critical appraisal of the NINDS CDEs was highly positive, but revealed that full assessment can be time consuming, that some CDEs had very low frequencies, and identified a few redundancies and ambiguity in some definitions. Whilst primarily developed for research, implementation of CDE templates for use in clinical practice is advocated, but this will require development of an abbreviated version. In conclusion, with this study, we provide an educational resource for clinicians and researchers to help assess, characterize, and report the vast and complex spectrum of imaging findings in patients with TBI. Our data provides a comprehensive overview of the contemporary landscape of TBI imaging pathology in Europe, and the findings can serve as empirical evidence for updating the current NINDS radiologic CDEs to version 3.0.

3.
Neurosurgery ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771081

RESUMO

BACKGROUND AND OBJECTIVES: Guideline recommendations for surgical management of traumatic epidural hematomas (EDHs) do not directly address EDHs that co-occur with other intracranial hematomas; the relative rates of isolated vs nonisolated EDHs and guideline adherence are unknown. We describe characteristics of a contemporary cohort of patients with EDHs and identify factors influencing acute surgery. METHODS: This research was conducted within the longitudinal, observational Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury cohort study which prospectively enrolled patients with traumatic brain injury from 65 hospitals in 18 European countries from 2014 to 2017. All patients with EDH on the first scan were included. We describe clinical, imaging, management, and outcome characteristics and assess associations between site and baseline characteristics and acute EDH surgery, using regression modeling. RESULTS: In 461 patients with EDH, median age was 41 years (IQR 24-56), 76% were male, and median EDH volume was 5 cm3 (IQR 2-20). Concomitant acute subdural hematomas (ASDHs) and/or intraparenchymal hemorrhages were present in 328/461 patients (71%). Acute surgery was performed in 99/461 patients (21%), including 70/86 with EDH volume ≥30 cm3 (81%). Larger EDH volumes (odds ratio [OR] 1.19 [95% CI 1.14-1.24] per cm3 below 30 cm3), smaller ASDH volumes (OR 0.93 [95% CI 0.88-0.97] per cm3), and midline shift (OR 6.63 [95% CI 1.99-22.15]) were associated with acute surgery; between-site variation was observed (median OR 2.08 [95% CI 1.01-3.48]). Six-month Glasgow Outcome Scale-Extended scores ≥5 occurred in 289/389 patients (74%); 41/389 (11%) died. CONCLUSION: Isolated EDHs are relatively infrequent, and two-thirds of patients harbor concomitant ASDHs and/or intraparenchymal hemorrhages. EDHs ≥30 cm3 are generally evacuated early, adhering to Brain Trauma Foundation guidelines. For heterogeneous intracranial pathology, surgical decision-making is related to clinical status and overall lesion burden. Further research should examine the optimal surgical management of EDH with concomitant lesions in traumatic brain injury, to inform updated guidelines.

4.
J Neurosurg ; 141(2): 417-429, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489823

RESUMO

OBJECTIVE: The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticosteroid Randomization After Significant Head Injury (CRASH) prognostic models for mortality and outcome after traumatic brain injury (TBI) were developed using data from 1984 to 2004. This study examined IMPACT and CRASH model performances in a contemporary cohort of US patients. METHODS: The prospective 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years 2014-2018) enrolled subjects aged ≥ 17 years who presented to level I trauma centers and received head CT within 24 hours of TBI. Data were extracted from the subjects who met the model criteria (for IMPACT, Glasgow Coma Scale [GCS] score 3-12 with 6-month Glasgow Outcome Scale-Extended [GOSE] data [n = 441]; for CRASH, GCS score 3-14 with 2-week mortality data and 6-month GOSE data [n = 831]). Analyses were conducted in the overall cohort and stratified on the basis of TBI severity (severe/moderate/mild TBI defined as GCS score 3-8/9-12/13-14), age (17-64 years or ≥ 65 years), and the 5 top enrolling sites. Unfavorable outcome was defined as GOSE score 1-4. Original IMPACT and CRASH model coefficients were applied, and model performances were assessed by calibration (intercept [< 0 indicated overprediction; > 0 indicated underprediction] and slope) and discrimination (c-statistic). RESULTS: Overall, the IMPACT models overpredicted mortality (intercept -0.79 [95% CI -1.05 to -0.53], slope 1.37 [1.05-1.69]) and acceptably predicted unfavorable outcome (intercept 0.07 [-0.14 to 0.29], slope 1.19 [0.96-1.42]), with good discrimination (c-statistics 0.84 and 0.83, respectively). The CRASH models overpredicted mortality (intercept -1.06 [-1.36 to -0.75], slope 0.96 [0.79-1.14]) and unfavorable outcome (intercept -0.60 [-0.78 to -0.41], slope 1.20 [1.03-1.37]), with good discrimination (c-statistics 0.92 and 0.88, respectively). IMPACT overpredicted mortality and acceptably predicted unfavorable outcome in the severe and moderate TBI subgroups, with good discrimination (c-statistic ≥ 0.81). CRASH overpredicted mortality in the severe and moderate TBI subgroups and acceptably predicted mortality in the mild TBI subgroup, with good discrimination (c-statistic ≥ 0.86); unfavorable outcome was overpredicted in the severe and mild TBI subgroups with adequate discrimination (c-statistic ≥ 0.78), whereas calibration was nonlinear in the moderate TBI subgroup. In subjects ≥ 65 years of age, the models performed variably (IMPACT-mortality, intercept 0.28, slope 0.68, and c-statistic 0.68; CRASH-unfavorable outcome, intercept -0.97, slope 1.32, and c-statistic 0.88; nonlinear calibration for IMPACT-unfavorable outcome and CRASH-mortality). Model performance differences were observed across the top enrolling sites for mortality and unfavorable outcome. CONCLUSIONS: The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome. Observed overestimations of mortality and unfavorable outcome underscore the need to update prognostic models to incorporate contemporary changes in TBI management and case-mix. Investigations to elucidate the relationships between increased survival, outcome, treatment intensity, and site-specific practices will be relevant to improve models in specific TBI subpopulations (e.g., older adults), which may benefit from the inclusion of blood-based biomarkers, neuroimaging features, and treatment data.


Assuntos
Lesões Encefálicas Traumáticas , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Lesões Encefálicas Traumáticas/mortalidade , Lesões Encefálicas Traumáticas/terapia , Pessoa de Meia-Idade , Feminino , Prognóstico , Masculino , Adulto , Estudos Prospectivos , Idoso , Estudos de Coortes , Adulto Jovem , Adolescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA