Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 233(5): 4183-4193, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29030987

RESUMO

Serotonin (5-HT) is an essential gastrointestinal modulator whose effects regulate the intestinal physiology. 5-HT effects depend on extracellular 5-HT bioavailability, which is controlled by the serotonin transporter (SERT) expressed in both the apical and basolateral membranes of enterocytes. SERT is a critical target for regulating 5-HT levels and consequently, modulating the intestinal physiology. The deregulation of innate immune receptors has been extensively studied in inflammatory bowel diseases (IBD), where an exacerbated defense response to commensal microbiota is observed. Interestingly, many innate immune receptors seem to affect the serotonergic system, demonstrating a new way in which microbiota could modulate the intestinal physiology. Therefore, our aim was to analyze the effects of NOD1 activation on SERT function, as well as NOD1's interaction with other immune receptors such as TLR2 and TLR4. Our results showed that NOD1 activation inhibits SERT activity and expression in Caco-2/TC7 cells through the extracellular signal-regulated kinase (ERK) signaling pathway. A negative feedback between 5-HT and NOD1 expression was also described. The results showed that TLR2 and TLR4 activation seems to regulate NOD1 expression in Caco-2/TC7 cells. To assess the extend of cross-talk between NOD1 and TLRs, NOD1 expression was measured in the intestinal tract (ileum and colon) of wild type mice and mice with individual knockouts of TLR2, and TLR4 as well as double knockout TLR2/TLR4 mice. Hence, we demonstrate that NOD1 acts on the serotonergic system decreasing SERT activity and molecular expression. Additionally, NOD1 expression seems to be modulated by 5-HT and other immune receptors as TLR2 and TLR4. This study could clarify the relation between both the intestinal serotonergic system and innate immune system, and their implications in intestinal inflammation.


Assuntos
Mucosa Intestinal/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Células CACO-2 , Enterócitos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
2.
Prostaglandins Other Lipid Mediat ; 79(3-4): 206-17, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16647635

RESUMO

The effects of PGE(2) on longitudinal smooth muscle, the intracellular mechanisms involved, and the localization of EP receptors were investigated in rabbit small intestine. PGE(2) evoked contractions in small intestine that were reduced by tetrodotoxin and hexamethonium. 17-Phenyl trinor PGE(2), sulprostone, misoprostol and 16,16-dimethyl PGE(2) evoked contractions. Butaprost did not modify spontaneous motility. AH 6809 reduced PGE(2) and 17-phenyl trinor PGE(2)-induced contractions. Verapamil, Ca(2+) free medium, staurosporine, forskolin, theophylline, and rolipram diminished, while IP-20 and H-89 increased PGE(2)-induced contractions. Western blot analysis showed protein bands of 41kDa for EP(1), 71kDa for EP(2) and 62kDa for EP(3) receptors. EP(1), EP(2) and EP(3) receptors were detected in neurons of the myenteric and submucosal ganglia, but only EP(3) receptors were found in smooth muscle layers. This study did not detect EP(4) receptor. PGE(2)-induced contractions would be mediated through EP(1) and EP(3) receptors, and voltage-dependent Ca(2+) channels, protein kinase C, and cAMP would be implicated in these responses.


Assuntos
Dinoprostona/farmacologia , Intestino Delgado/fisiologia , Contração Muscular , Músculo Liso/fisiologia , Receptores de Prostaglandina E/metabolismo , Animais , Western Blotting , Dinoprostona/análogos & derivados , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Motilidade Gastrointestinal/efeitos dos fármacos , Imuno-Histoquímica , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Coelhos , Receptores de Prostaglandina E/agonistas , Receptores de Prostaglandina E/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA