Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Lett ; 728: 134898, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32224224

RESUMO

Noise pollution is a severe public health problem as continuous exposure to even moderate noise levels between 55-65 dB can lead to various pathologies, including neurological states. In the present study, we assessed the ultrastructural alterations in selective auditory pathways of the rat brain following high intensity white noise exposure. In addition, learning, anxiety-like behavior and locomotor activity were assessed. Adult male rats were exposed to 100 dB noise, one hour daily, for 10 consecutive days. The evaluations were performed on day 11. Exposure to noise did not affect learning or the components of locomotor activity. However, it induced anxiety-like behavior as evidenced by time spent in the closed arm of elevated-plus maze. Concomitantly, ultrastructural changes in medial geniculate body, considered an integral component of classical auditory pathway, as well as in the hippocampus and basolateral amygdala, considered important structures of non-classical auditory pathway were noted. Specifically, noise resulted in neuronal apoptosis, chromatolysis, cytoplasmic organelle destruction, and glial activation in medial geniculate body and hippocampus, as well as mild alterations in amygdala. These results provide further evidence of detrimental consequences following exposure to loud noise.


Assuntos
Ansiedade/fisiopatologia , Vias Auditivas/fisiologia , Comportamento Animal/fisiologia , Ruído , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/fisiopatologia , Animais , Ansiedade/metabolismo , Hipocampo/fisiologia , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto/fisiologia , Atividade Motora/fisiologia , Ratos Wistar
2.
Micron ; 125: 102732, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31437571

RESUMO

Autism spectrum disorder is a group of life-long developmental syndromes, characterized by stereotypic behavior, restricted, communication deficits, cognitive and social impairments. Autism spectrum disorder is heritable state, provided by the mutations of well-conserved genes; however, it has been increasingly accepted, that most of such states are the result of complex interaction between individual's genetic profile and the environment that he/she is exposed to. Gut microbiota plays one of the central roles in the etiology of autism. Propionic acid is one of the most abundant short-chain fatty acids, made by enteric bacteria. Propionic acid has many positive functions and acts as the main mediator between nutrition, gut microbiota and brain physiology. However, increased level of propionic acid is associated with various neurological pathologies, including autism. It is proposed that some types of autism might be partially related with alterations in propionic acid metabolism. The amygdala, the main component of social brain, via its large interconnections with fronto-limbic neural system, plays one of the key roles in social communications, emotional memory and emotional processing. Social behavior is a hot topic in autism research. As to anxiety, it is not the main characteristics of ASD, but represents one of the most common its co morbidities. Several theoretical reasons compatible with amygdala dysfunction have been suggested to account for socio-emotional disturbances in autism. In the present study, using adolescent male Wistar rats, the effect of acute administration of low dose of propionic acid on social behavior, anxiety-like behavior and the structure/ultrastructure of central nucleus of amygdale was described. In addition to qualitative analysis, on electron microscopic level the quantitative analysis of some parameters of synapses was performed. Behavior was assessed 2, 24 and 48 hours after treatment. The results revealed that even single and relatively low dose of propionic acid is sufficient to produce fast and relatively long lasting (48 h after treatment) decrease of social motivation, whereas asocial motivation and emotional sphere remain unaffected. Morphological analyses of propionic acid-treated brain revealed the reduced neuron number and the increase of the number of glial cells. Electron microscopically, in some neurons the signs of apoptosis and chromatolysis were detected. Glial alterations were more common. Particularly, the activation of astrocytes and microglia were often observed. Pericapillary glia was the most changed. Neuronal, glial and presynaptic mitochondria showed substantial structural diversities, mainly in terms of size and form. Total number of the area of presynaptic profile was significantly decreased. Some axons were moderately demyelinated. In general, the data indicate that even low dose of propionic acid produces in adolescent rodents immediate changes in social behavior, and structural/ultrastructural alterations in amygdala. Ultrastructural alterations may reflect moderate modifications in functional networks of social brain.

3.
Discoveries (Craiova) ; 5(3): e77, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32309595

RESUMO

Neuronal porosomes are 15 nm cup-shaped lipoprotein secretory machines composed of nearly 30 proteins present at the presynaptic membrane, that have been investigated using multiple imaging modalities, such as electron microscopy, atomic force microscopy, and solution X-ray. Synaptic vesicles transiently dock and fuse at the base of the porosome cup facing the cytosol, by establishing a fusion pore for neurotransmitter release. Studies on the morphology, dynamics, isolation, composition, and reconstitution of the neuronal porosome complex provide a molecular understanding of its structure and function. In the past twenty years, a large body of evidence has accumulated on the involvement of the neuronal porosome proteins in neurotransmission and various neurological disorders. In light of these findings, this review briefly summarizes our current understanding of the neuronal porosome complex, the secretory nanomachine at the nerve terminal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA