Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834773

RESUMO

The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, possesses an unusually large positive-sense, single-stranded viral RNA (ssvRNA) genome of about ~29,903 nucleotides (nt). In many respects, this ssvRNA resembles a very large, polycistronic messenger RNA (mRNA) possessing a 5'-methyl cap (m7GpppN), a 3'- and 5'-untranslated region (3'-UTR, 5'-UTR), and a poly-adenylated (poly-A+) tail. As such, the SARS-CoV-2 ssvRNA is susceptible to targeting by small non-coding RNA (sncRNA) and/or microRNA (miRNA), as well as neutralization and/or inhibition of its infectivity via the human body's natural complement of about ~2650 miRNA species. Depending on host cell and tissue type, in silico analysis, RNA sequencing, and molecular-genetic investigations indicate that, remarkably, almost every single human miRNA has the potential to interact with the primary sequence of SARS-CoV-2 ssvRNA. Individual human variation in host miRNA abundance, speciation, and complexity among different human populations and additional variability in the cell and tissue distribution of the SARS-CoV-2 angiotensin converting enzyme-2 (ACE2) receptor (ACE2R) appear to further contribute to the molecular-genetic basis for the wide variation in individual host cell and tissue susceptibility to COVID-19 infection. In this paper, we review recently described aspects of the miRNA and ssvRNA ribonucleotide sequence structure in this highly evolved miRNA-ssvRNA recognition and signaling system and, for the first time, report the most abundant miRNAs in the control superior temporal lobe neocortex (STLN), an anatomical area involved in cognition and targeted by both SARS-CoV-2 invasion and Alzheimer's disease (AD). We further evaluate important factors involving the neurotropic nature of SARS-CoV-2 and miRNAs and ACE2R distribution in the STLN that modulate significant functional deficits in the brain and CNS associated with SARS-CoV-2 infection and COVID-19's long-term neurological effects.


Assuntos
COVID-19 , MicroRNAs , Humanos , SARS-CoV-2/metabolismo , MicroRNAs/genética , Encéfalo/metabolismo
2.
Cell Mol Neurobiol ; 42(1): 217-224, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32840758

RESUMO

The gateway for invasion by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into human host cells is via the angiotensin-converting enzyme 2 (ACE2) transmembrane receptor expressed in multiple immune and nonimmune cell types. SARS-CoV-2, that causes coronavirus disease 2019 (COVID-19; CoV-19) has the unusual capacity to attack many different types of human host cells simultaneously via novel clathrin- and caveolae-independent endocytic pathways, becoming injurious to diverse cells, tissues and organ systems and exploiting any immune weakness in the host. The elicitation of this multipronged attack explains in part the severity and extensive variety of signs and symptoms observed in CoV-19 patients. To further our understanding of the mechanism and pathways of SARS-CoV-2 infection and susceptibility of specific cell- and tissue-types and organ systems to SARS-CoV-2 attack in this communication we analyzed ACE2 expression in 85 human tissues including 21 different brain regions, 7 fetal tissues and 8 controls. Besides strong ACE2 expression in respiratory, digestive, renal-excretory and reproductive cells, high ACE2 expression was also found in the amygdala, cerebral cortex and brainstem. The highest ACE2 expression level was found in the pons and medulla oblongata in the human brainstem, containing the medullary respiratory centers of the brain, and may in part explain the susceptibility of many CoV-19 patients to severe respiratory distress.


Assuntos
Encéfalo/patologia , Encéfalo/virologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , Regulação Enzimológica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Especificidade de Órgãos
3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293528

RESUMO

Lipopolysaccharides (LPSs) are microbiome-derived glycolipids that are among the most potent pro-inflammatory neurotoxins known. In Homo sapiens, the major sources of LPSs are gastrointestinal (GI)-tract-resident facultative anaerobic Gram-negative bacilli, including Bacteroides fragilis and Escherichia coli. LPSs have been abundantly detected in aged human brain by multiple independent research investigators, and an increased abundance of LPSs around and within Alzheimer's disease (AD)-affected neurons has been found. Microbiome-generated LPSs and other endotoxins cross GI-tract biophysiological barriers into the systemic circulation and across the blood-brain barrier into the brain, a pathological process that increases during aging and in vascular disorders, including 'leaky gut syndrome'. Further evidence indicates that LPSs up-regulate pro-inflammatory transcription factor complex NF-kB (p50/p65) and subsequently a set of NF-kB-sensitive microRNAs, including miRNA-30b, miRNA-34a, miRNA-146a and miRNA-155. These up-regulated miRNAs in turn down-regulate a family of neurodegeneration-associated messenger RNA (mRNA) targets, including the mRNA encoding the neuron-specific neurofilament light (NF-L) chain protein. While NF-L has been reported to be up-regulated in peripheral biofluids in AD and other progressive and lethal pro-inflammatory neurodegenerative disorders, NF-L is significantly down-regulated within neocortical neurons, and this may account for neuronal atrophy, loss of axonal caliber and alterations in neuronal cell shape, modified synaptic architecture and network deficits in neuronal signaling capacity. This paper reviews and reveals the most current findings on the neurotoxic aspects of LPSs and how these pro-inflammatory glycolipids contribute to the biological mechanism of progressive, age-related and ultimately lethal neurodegenerative disorders. This recently discovered gut-microbiota-derived LPS-NF-kB-miRNA-30b-NF-L pathological signaling network: (i) underscores a direct positive pathological link between the LPSs of GI-tract microbes and the inflammatory neuropathology, disordered cytoskeleton, and disrupted synaptic-signaling of the AD brain and stressed human brain cells in primary culture; and (ii) is the first example of a microbiome-derived neurotoxic glycolipid having significant detrimental miRNA-mediated actions on the expression of NF-L, an abundant filamentous protein known to be important in the maintenance of neuronal and synaptic homeostasis.


Assuntos
Doença de Alzheimer , MicroRNAs , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Humanos , Idoso , Doença de Alzheimer/patologia , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Neurotoxinas , Glicolipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro
4.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014365

RESUMO

The natural element aluminum possesses a number of unique biochemical and biophysical properties that make this highly neurotoxic species deleterious towards the structural integrity, conformation, reactivity and stability of several important biomolecules. These include aluminum's (i) small ionic size and highly electrophilic nature, having the highest charge density of any metallic cation with a Z2/r of 18 (ionic charge +3, radius 0.5 nm); (ii) inclination to form extremely stable electrostatic bonds with a tendency towards covalency; (iii) ability to interact irreversibly and/or significantly slow down the exchange-rates of complex aluminum-biomolecular interactions; (iv) extremely dense electropositive charge with one of the highest known affinities for oxygen-donor ligands such as phosphate; (v) presence as the most abundant metal in the Earth's biosphere and general bioavailability in drinking water, food, medicines, consumer products, groundwater and atmospheric dust; and (vi) abundance as one of the most commonly encountered intracellular and extracellular metallotoxins. Despite aluminum's prevalence and abundance in the biosphere it is remarkably well-tolerated by all plant and animal species; no organism is known to utilize aluminum metabolically; however, a biological role for aluminum has been assigned in the compaction of chromatin. In this Communication, several examples are given where aluminum has been shown to irreversibly perturb and/or stabilize the natural conformation of biomolecules known to be important in energy metabolism, gene expression, cellular homeostasis and pathological signaling in neurological disease. Several neurodegenerative disorders that include the tauopathies, Alzheimer's disease and multiple prion disorders involve the altered conformation of naturally occurring cellular proteins. Based on the data currently available we speculate that one way aluminum contributes to neurological disease is to induce the misfolding of naturally occurring proteins into altered pathological configurations that contribute to the neurodegenerative disease process.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Deficiências na Proteostase , Alumínio/metabolismo , Animais , Conformação Proteica
5.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502105

RESUMO

The human brain and central nervous system (CNS) harbor a select sub-group of potentially pathogenic microRNAs (miRNAs), including a well-characterized NF-kB-sensitive Homo sapiens microRNA hsa-miRNA-146a-5p (miRNA-146a). miRNA-146a is significantly over-expressed in progressive and often lethal viral- and prion-mediated and related neurological syndromes associated with progressive inflammatory neurodegeneration. These include ~18 different viral-induced encephalopathies for which data are available, at least ~10 known prion diseases (PrD) of animals and humans, Alzheimer's disease (AD) and other sporadic and progressive age-related neurological disorders. Despite the apparent lack of nucleic acids in prions, both DNA- and RNA-containing viruses along with prions significantly induce miRNA-146a in the infected host, but whether this represents part of the host's adaptive immunity, innate-immune response or a mechanism to enable the invading prion or virus a successful infection is not well understood. Current findings suggest an early and highly interactive role for miRNA-146a: (i) as a major small noncoding RNA (sncRNA) regulator of innate-immune responses and inflammatory signaling in cells of the human brain and CNS; (ii) as a critical component of the complement system and immune-related neurological dysfunction; (iii) as an inducible sncRNA of the brain and CNS that lies at a critical intersection of several important neurobiological adaptive immune response processes with highly interactive associations involving complement factor H (CFH), Toll-like receptor pathways, the innate-immunity, cytokine production, apoptosis and neural cell decline; and (iv) as a potential biomarker for viral infection, TSE and AD and other neurological diseases in both animals and humans. In this report, we review the recent data supporting the idea that miRNA-146a may represent a novel and unique sncRNA-based biomarker for inflammatory neurodegeneration in multiple species. This paper further reviews the current state of knowledge regarding the nature and mechanism of miRNA-146a in viral and prion infection of the human brain and CNS with reference to AD wherever possible.


Assuntos
Encéfalo/patologia , Viroses do Sistema Nervoso Central/imunologia , Regulação da Expressão Gênica/imunologia , MicroRNAs/metabolismo , Doenças Priônicas/imunologia , Apoptose/genética , Apoptose/imunologia , Biomarcadores/análise , Biomarcadores/metabolismo , Encéfalo/imunologia , Encéfalo/virologia , Viroses do Sistema Nervoso Central/diagnóstico , Viroses do Sistema Nervoso Central/genética , Viroses do Sistema Nervoso Central/virologia , Fator H do Complemento/metabolismo , Citocinas/metabolismo , Humanos , MicroRNAs/análise , MicroRNAs/genética , NF-kappa B/metabolismo , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Doenças Priônicas/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo
6.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708414

RESUMO

Exosomes (EXs) and extracellular microvesicles (EMVs) represent a diverse assortment of plasma membrane-derived nanovesicles, 30-1000 nm in diameter, released by all cell lineages of the central nervous system (CNS). They are examples of a very active and dynamic form of extracellular communication and the conveyance of biological information transfer essential to maintain homeostatic neurological functions and contain complex molecular cargoes representative of the cytoplasm of their cells of origin. These molecular cargoes include various mixtures of proteins, lipids, proteolipids, cytokines, chemokines, carbohydrates, microRNAs (miRNA) and messenger RNAs (mRNA) and other components, including end-stage neurotoxic and pathogenic metabolic products, such as amyloid beta (Aß) peptides. Brain microglia, for example, respond to both acute CNS injuries and degenerative diseases with complex reactions via the induction of a pro-inflammatory phenotype, and secrete EXs and EMVs enriched in selective pathogenic microRNAs (miRNAs) such as miRNA-34a, miRNA-125b, miRNA-146a, miRNA-155, and others that are known to promote neuro-inflammation, induce complement activation, disrupt innate-immune signaling and deregulate the expression of neuron-specific phosphoproteins involved in neurotropism and synaptic signaling. This communication will review our current understanding of the trafficking of miRNA-containing EXs and EMVs from astrocytes and "activated pro-inflammatory" microglia to target neurons in neurodegenerative diseases with an emphasis on Alzheimer's disease wherever possible.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/genética , Astrócitos/metabolismo , Transporte Biológico/genética , Exossomos/genética , Vesículas Extracelulares/metabolismo , Humanos , Inflamação/patologia , MicroRNAs/genética , Neuroglia/metabolismo
7.
Cell Mol Neurobiol ; 38(5): 1021-1031, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29302837

RESUMO

Alzheimer's disease (AD) of the brain neocortex and age-related macular degeneration (AMD) of the retina are two complex neurodegenerative disorders, which (i) involve the progressive dysregulation and deterioration of multiple neurobiological signaling pathways, (ii) exhibit the temporal accumulation of pro-inflammatory lesions including the amyloid beta (Aß) peptide-containing senile plaques of AD and the drusen of AMD, and (iii) culminate in an insidious inflammatory neurodegeneration ending, respectively, in neural cell atrophy and death and progressive loss of cognition and central visual function. Recent independent research studies have indicated that AD and AMD share common, pathological signaling defects and disease mechanisms at the molecular genetic level. Using high-integrity total RNA samples pooled from AD brain and AMD retina, microfluidic hybridization miRNA arrays, and bioinformatics, the current study was undertaken to quantify microRNA (miRNA) speciation and complexity common to both AD and AMD. These small non-coding (sncRNAs) are known to post-transcriptionally regulate multiple neurobiological pathways and an abundance of research information has already been generated on the roles of these miRNAs in pathological situations involving inflammatory neuropathology and neural cell decline. Here, for the first time, we report the sequence and abundance of a septet of sncRNAs including miRNA-7, miRNA-9-1, miRNA-23a/miRNA-27a, miRNA-34a, miRNA-125b-1, miRNA-146a, and miRNA-155 that are significantly increased in abundance and common to both AD-affected superior temporal lobe neocortex (Brodmann A22) and the AMD-affected macular region of the retina. Bioinformatics, miRNA-mRNA complementarity, next-gen RNA sequencing, and feature alignment analysis further indicate that these 7 up-regulated miRNAs have the potential to interact with and down-regulate ~ 9460 target messenger RNAs (mRNAs; about 3.5% of the genome) involved in the synchronization of amyloid production and clearance, phagocytosis, innate-immune, pro-inflammatory, and neurotrophic signaling and/or synaptogenesis in diseased tissues.


Assuntos
Doença de Alzheimer/genética , Inflamação/genética , Degeneração Macular/genética , MicroRNAs/genética , Regulação para Cima/genética , Sequência de Bases , Humanos , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
8.
Int J Mol Sci ; 16(12): 30105-16, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26694372

RESUMO

Of the approximately ~2.65 × 10³ mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset-about 35-40-are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA-mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer's disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , MicroRNAs/metabolismo , Transdução de Sinais/genética , Regiões 3' não Traduzidas/genética , Regulação para Baixo/genética , Humanos , MicroRNAs/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Seleção Genética , Regulação para Cima/genética
9.
Int J Mol Sci ; 13(8): 9615-9626, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22949820

RESUMO

Evolution of reactive oxygen species (ROS), generated during the patho-physiological stress of nervous tissue, has been implicated in the etiology of several progressive human neurological disorders including Alzheimer's disease (AD) and amylotrophic lateral sclerosis (ALS). In this brief communication we used mixed isomers of 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-DCFDA; C(25)H(14)C(l2)O(9); MW 529.3), a novel fluorescent indicator, to assess ROS generation within human neuronal-glial (HNG) cells in primary co-culture. We introduced pathological stress using the sulfates of 12 environmentally-, industrially- and agriculturally-relevant divalent and trivalent metals including Al, Cd, Cu, Fe, Hg, Ga, Mg, Mn, Ni, Pb, Sn and Zn. In this experimental test system, of all the metal sulfates analyzed, aluminum sulfate showed by far the greatest ability to induce intracellular ROS. These studies indicate the utility of using isomeric mixtures of carboxy-H(2)DCFDA diacetates as novel and highly sensitive, long-lasting, cell-permeant, fluorescein-based tracers for quantifying ROS generation in intact, metabolizing human brain cells, and in analyzing the potential epigenetic contribution of different metal sulfates to ROS-generation and ROS-mediated neurological dysfunction.


Assuntos
Encéfalo/metabolismo , Permeabilidade da Membrana Celular , Rastreamento de Células , Fluoresceínas , Metais/farmacologia , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfatos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Corantes Fluorescentes , Humanos , Metais/química , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Sulfatos/química
10.
Folia Neuropathol ; 60(1): 24-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359143

RESUMO

The pro-inflammatory, innate-immune system ribonucleic acid mediator microRNA-146a, constitutively expressed in the brain and central nervous system (CNS) of both the mouse and the human, is pathologically up-regulated in multiple transmissible spongiform encephalopathies (TSEs) to several times its basal level. miRNA-146a: (i) exists as a ~22-ribonucleotide (nt) single-stranded non-coding RNA (sncRNA) whose sequence is unique and highly selected over evolution; (ii) is brain-, CNS- and lymphoid-tissue enriched and exhibits a 100% RNA sequence homology between the mouse and the human; (iii) has been repeatedly shown to play critical immunological and pro-inflammatory roles in the onset and propagation of several human CNS disorders including progressive, incapacitating, and lethal neurological syndromes that include prion disease (PrD) and Alzheimer's disease (AD); (iv) is a fascinating molecular entity because it is representative of the smallest class of soluble, information-carrying, amphipathic sncRNA yet described; (v) has capability to be induced by cellular stressors and the pro-inflammatory transcription factor NF-kB (p50/p65); (vi) has capability to post-transcriptionally regulate multiple mRNAs and cellular processes in neurological health and disease; (vii) is upregulated in human host cells after viral invasion by single-stranded RNA (ssRNA) or double-stranded DNA (dsDNA) neurotropic viruses; and (viii) has an immense potential in neuro-degenerative disease therapeutics via anti-NF-kB and/or anti-miRNA-146a treatment strategies. In this short communication we provide for the first time evidence that miRNA-146a is a prominent sncRNA species in experimental murine prion disease, progressively increasing in the pre-symptomatic stages in C57BL/6J, SJL/J or Swiss Albino murine scrapie prion models. The highest miRNA-146a levels were quantified in these three different murine scrapie models exhibiting full symptomology of prion infection. The results suggest that miRNA-146a levels in the brain may be useful as an accessory diagnostic, prognostic or response-to-treatment biomarker to monitor the onset and development of PrD in experimental murine models that may also be extrapolated to be a relevant adjunct biomarker in human TSEs.


Assuntos
Doença de Alzheimer , MicroRNAs , Doenças Priônicas , Doença de Alzheimer/genética , Animais , Biomarcadores , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética
11.
Biomolecules ; 12(9)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139092

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 disease, is a highly infectious and transmissible viral pathogen that continues to impact human health globally. Nearly ~600 million people have been infected with SARS-CoV-2, and about half exhibit some degree of continuing health complication, generically referred to as long COVID. Lingering and often serious neurological problems for patients in the post-COVID-19 recovery period include brain fog, behavioral changes, confusion, delirium, deficits in intellect, cognition and memory issues, loss of balance and coordination, problems with vision, visual processing and hallucinations, encephalopathy, encephalitis, neurovascular or cerebrovascular insufficiency, and/or impaired consciousness. Depending upon the patient's age at the onset of COVID-19 and other factors, up to ~35% of all elderly COVID-19 patients develop a mild-to-severe encephalopathy due to complications arising from a SARS-CoV-2-induced cytokine storm and a surge in cytokine-mediated pro-inflammatory and immune signaling. In fact, this cytokine storm syndrome: (i) appears to predispose aged COVID-19 patients to the development of other neurological complications, especially those who have experienced a more serious grade of COVID-19 infection; (ii) lies along highly interactive and pathological pathways involving SARS-CoV-2 infection that promotes the parallel development and/or intensification of progressive and often lethal neurological conditions, and (iii) is strongly associated with the symptomology, onset, and development of human prion disease (PrD) and other insidious and incurable neurological syndromes. This commentary paper will evaluate some recent peer-reviewed studies in this intriguing area of human SARS-CoV-2-associated neuropathology and will assess how chronic, viral-mediated changes to the brain and CNS contribute to cognitive decline in PrD and other progressive, age-related neurodegenerative disorders.


Assuntos
COVID-19 , Encefalite , Doenças do Sistema Nervoso , Doenças Priônicas , Idoso , COVID-19/complicações , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Encefalite/complicações , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
12.
Front Neurol ; 13: 900048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812116

RESUMO

Microbiome-derived Gram-negative bacterial lipopolysaccharide (LPS) has been shown by multiple laboratories to reside within Alzheimer's disease (AD)-affected neocortical and hippocampal neurons. LPS and other pro-inflammatory stressors strongly induce a defined set of NF-kB (p50/p65)-sensitive human microRNAs, including a brain-enriched Homo sapien microRNA-30b-5p (hsa-miRNA-30b-5p; miRNA-30b). Here we provide evidence that this neuropathology-associated miRNA, known to be upregulated in AD brain and LPS-stressed human neuronal-glial (HNG) cells in primary culture targets the neurofilament light (NF-L) chain mRNA 3'-untranslated region (3'-UTR), which is conducive to the post-transcriptional downregulation of NF-L expression observed within both AD and LPS-treated HNG cells. A deficiency of NF-L is associated with consequent atrophy of the neuronal cytoskeleton and the disruption of synaptic organization. Interestingly, miRNA-30b has previously been shown to be highly expressed in amyloid-beta (Aß) peptide-treated animal and cell models, and Aß peptides promote LPS entry into neurons. Increased miRNA-30b expression induces neuronal injury, neuron loss, neuronal inflammation, impairment of synaptic transmission, and synaptic failure in neurodegenerative disease and transgenic murine models. This gut microbiota-derived LPS-NF-kB-miRNA-30b-NF-L pathological signaling network: (i) underscores a positive pathological link between the LPS of gastrointestinal (GI)-tract microbes and the inflammatory neuropathology, disordered cytoskeleton, and disrupted synaptic signaling of the AD brain and stressed brain cells; and (ii) is the first example of a microbiome-derived neurotoxic glycolipid having significant detrimental miRNA-30b-mediated actions on the expression of NF-L, an abundant neuron-specific filament protein known to be important in the maintenance of neuronal cell shape, axonal caliber, and synaptic homeostasis.

13.
Mol Neurobiol ; 57(3): 1779, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970658

RESUMO

The Editor-in Chief of Molecular Neurobiology has retracted this article [1] at the request of the corresponding author. This is because it significantly overlaps with their previous publication [2]. Both articles report the same results and as such this article is redundant.Walter J. Lukiw, Maire E. Percy, and Zhide Fang agree to this retraction.William J.Walsh and Yuhai Zhao do not agree to this retraction. Aileen I. Pogue, Nathan M. Sharfman, Vivian Jaber, and Wenhong Li have not responded to any correspondence from the editor/publisher about this retraction. Donald R. C. McLachlan, Catherine Bergeron, Peter N. Alexandrov, and Theodore P. A. Kruck are deceased.[1] McLachlan, D.R.C., Bergeron, C., Alexandrov, P.N. et al. Mol Neurobiol (2019) 56: 1531. https://doi.org/10.1007/s12035-018-1441-x[2] McLachlan, D.R.C., Alexandrov, P.N., Walsh, W.J. et al. J Alzheimers Dis Parkinsonism (2018) 8(6): 457. https://doi.org/10.4172/2161-0460.1000457.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31179161

RESUMO

Aluminum is a ubiquitous neurotoxin highly enriched in our biosphere, and has been implicated in the etiology and pathology of multiple neurological diseases that involve inflammatory neural degeneration, behavioral impairment and cognitive decline. Over the last 36 years our group has analyzed the aluminum content of the temporal lobe neocortex of 511 high quality coded human brain samples from 18 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Brodmann anatomical areas including the inferior, medial and superior temporal gyrus (A20-A22) were selected for analysis: (i) because of their essential functions in massive neural information processing operations including cognition and memory formation; and (ii) because subareas of these anatomical regions are unique to humans and are amongst the earliest areas affected by progressive neurodegenerative disorders such as Alzheimer's disease (AD). Coded brain tissue samples were analyzed using the analytical technique of: (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) an experimental multi-elemental analysis using the advanced photon source (APS) ultra-bright storage ring-generated hard X-ray beam (7 GeV) and fluorescence raster scanning (XRFR) spectroscopy device at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. These data represent the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. Neurological diseases examined were AD (N=186), ataxia Friedreich's type (AFT; N=6), amyotrophic lateral sclerosis (ALS; N=16), autism spectrum disorder (ASD; N=26), dialysis dementia syndrome (DDS; N=27), Down's syndrome (DS; trisomy21; N=24), Huntington's chorea (HC; N=15), multiple infarct dementia (MID; N=19), multiple sclerosis (MS; N=23), Parkinson's disease (PD; N=27), prion disease (PrD; N=11) including bovine spongiform encephalopathy (BSE; 'mad cow disease'), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N=11), progressive supranuclear palsy (PSP; N=24), schizophrenia (SCZ; N=21), a young control group (YCG; N=22) and an aged control group (ACG; N=53). Amongst these 18 common neurological conditions and controls we report a statistically significant trend for aluminum to be increased only in AD, DS and DDS compared to age- and gender-matched brains from the same anatomical region. The results continue to suggest that aluminum's association with AD, DDS and DS brain tissues may contribute to the neuropathology of these neurological diseases but appear not to be a significant factor in other common disorders of the human central nervous system (CNS).

15.
Mol Neurobiol ; 56(2): 1531-1538, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30706368

RESUMO

With continuing cooperation from 18 domestic and international brain banks over the last 36 years, we have analyzed the aluminum content of the temporal lobe neocortex of 511 high-quality human female brain samples from 16 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Temporal lobes (Brodmann areas A20-A22) were selected for analysis because of their availability and their central role in massive information-processing operations including efferent-signal integration, cognition, and memory formation. We used the analytical technique of (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) preliminary analysis from the advanced photon source (APS) hard X-ray beam (7 GeV) fluorescence raster-scanning (XRFR) spectroscopy device (undulator beam line 2-ID-E) at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. Neurological diseases examined were Alzheimer's disease (AD; N = 186), ataxia Friedreich's type (AFT; N = 6), amyotrophic lateral sclerosis (ALS; N = 16), autism spectrum disorder (ASD; N = 26), dialysis dementia syndrome (DDS; N = 27), Down's syndrome (DS; trisomy, 21; N = 24), Huntington's chorea (HC; N = 15), multiple infarct dementia (MID; N = 19), multiple sclerosis (MS; N = 23), Parkinson's disease (PD; N = 27), and prion disease (PrD; N = 11) that included bovine spongiform encephalopathy (BSE; "mad cow disease"), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N = 11), progressive supranuclear palsy (PSP; N = 24), schizophrenia (SCZ; N = 21), a young control group (YCG; N = 22; mean age, 10.2 ± 6.1 year), and an aged control group (ACG; N = 53; mean age, 71.4 ± 9.3 year). Using ETAAS, all measurements were performed in triplicate on each tissue sample. Among these 17 common neurological conditions, we found a statistically significant trend for aluminum to be increased only in AD, DS, and DDS compared to age- and gender-matched brains from the same anatomical region. This is the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. The results continue to suggest that aluminum's association with AD, DDS, and DS brain tissues may contribute to the neuropathology of those neurological diseases but appear not to be a significant factor in other common disorders of the human brain and/or CNS.


Assuntos
Alumínio/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Doenças Neurodegenerativas/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Humanos , Pessoa de Meia-Idade , Doenças Neurodegenerativas/etiologia , Bancos de Tecidos
16.
Integr Food Nutr Metab ; 5(3)2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29938114

RESUMO

Aluminum and mercury are common neurotoxic contaminants in our environment - from the air we breathe to the water that we drink to the foods that we eat. It is remarkable that to date neither of these two well-established environmental neurotoxins (i.e. those having a general toxicity towards brain cells) and genotoxins (those agents which exhibit directed toxicity toward the genetic apparatus) have been critically studied, nor have their neurotoxicities been evaluated in human neurobiology or in cells of the human central nervous system (CNS). In this paper we report the effects of added aluminum [sulfate; Al2(SO4)3] and/or mercury [sulfate; HgSO4] to human neuronal-glial (HNG) cells in primary co-culture using the evolution of the pro-inflammatory transcription factor NF-kB (p50/p65) complex as a critical indicator for the onset of inflammatory neurodegeneration and pathogenic inflammatory signaling. As indexed by significant induction of the NF-kB (p50/p65) complex the results indicate: (i) a notable increase in pro-inflammatory signaling imparted by each of these two environmental neurotoxins toward HNG cells in the ambient 20-200 nM range; and (ii) a significant synergism in the neurotoxicity when aluminum (sulfate) and mercury (sulfate) were added together. This is the first report on the neurotoxic effects of aluminum sulfate and/or mercury sulfate on the initiation of inflammatory signaling in human brain cells in primary culture. The effects aluminum+mercury together on other neurologically important signaling molecules or the effects of other combinations of common environmental metallic neurotoxins to human neurobiology currently remain not well understood but certainly warrant additional investigation and further study in laboratory animals, in human primary tissue cultures of CNS cells, and in other neurobiologically realistic experimental test systems.

17.
J Inorg Biochem ; 101(9): 1265-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17629564

RESUMO

Iron- and aluminum-sulfate together, at nanomolar concentrations, trigger the production of reactive oxygen species (ROS) in cultures of human brain cells. Previous studies have shown that following ROS induction, a family of pathogenic brain genes that promote inflammatory signalling, cellular apoptosis and brain cell death is significantly over-expressed. Notably, iron- and aluminum-sulfate induce genes in cultured human brain cells that exhibit expression patterns similar to those observed to be up-regulated in moderate- to late-stage Alzheimer's disease (AD). In this study we have extended our investigations to analyze the expression of micro RNA (miRNA) populations in iron- and aluminum-sulfate treated human neural cells in primary culture. The main finding was that these ROS-generating neurotoxic metal sulfates also up-regulate a specific set of miRNAs that includes miR-9, miR-125b and miR-128. Notably, these same miRNAs are up-regulated in AD brain. These findings further support the idea that iron- and aluminum-sulfates induce genotoxicity via a ROS-mediated up-regulation of specific regulatory elements and pathogenic genes that redirect brain cell fate towards progressive dysfunction and apoptotic cell death.


Assuntos
Encéfalo/efeitos dos fármacos , Metais/farmacologia , MicroRNAs/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Sulfatos/farmacologia , Sequência de Bases , Encéfalo/citologia , Encéfalo/metabolismo , Humanos
18.
J Alzheimers Dis ; 8(2): 117-27; discussion 209-15, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16308480

RESUMO

Disturbances in metal-ion transport, homeostasis, overload and metal ion-mediated catalysis are implicated in neurodegenerative conditions such as Alzheimer's disease (AD). The mechanisms of metal-ion induced disruption of genetic function, termed genotoxicity, are not well understood. In these experiments we examined the effects of non-apoptotic concentrations of magnesium-, iron- and aluminum-sulfate on gene expression patterns in untransformed human neural (HN) cells in primary culture using high density DNA array profiling and Western immunoassay. Two week old HN cells were exposed to low micromolar magnesium, iron, or aluminum for 7 days, representing trace metal exposure over one-third of their lifespan. While total RNA yield and abundance were not significantly altered, both iron and aluminum were found to induce HSP27, COX-2, betaAPP and DAXX gene expression. Similarly up-regulated gene expression for these stress-sensing, pro-inflammatory and pro-apoptotic elements have been observed in AD brain. The combination of iron and aluminum together was found to be particularly effective in up-regulating these genes, and was preceded by the evolution of reactive oxygen intermediates as measured by 2',7'-dichlorofluorescein diacetate assay. These data indicate that physiologically relevant amounts of iron and aluminum are capable of inducing Fenton chemistry-triggered gene expression programs that may support downstream pathogenic responses and brain cell dysfunction.


Assuntos
Compostos de Alúmen/toxicidade , Precursor de Proteína beta-Amiloide/genética , Proteínas de Transporte/genética , Ciclo-Oxigenase 2/genética , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ferro/toxicidade , Proteínas de Neoplasias/genética , Neurônios/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Linhagem Celular , Proteínas Correpressoras , Impressões Digitais de DNA , Sinergismo Farmacológico , Proteínas de Choque Térmico HSP27 , Homeostase/efeitos dos fármacos , Humanos , Sulfato de Magnésio/toxicidade , Chaperonas Moleculares , RNA/genética
19.
Neuroreport ; 15(9): 1507-10, 2004 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-15194884

RESUMO

Genome-wide expression profiling has identified significant alterations in the abundance of specific mRNA populations in Alzheimer's disease brain when compared to age-matched controls. Increases in the expression of certain brain genes are in contrast to the majority of expressed RNAs (55-67%), which are down-regulated. The data presented here shows, that at the level of mRNA abundance, there is marked up-regulation in a family of stress-related genes that have significant potential to promote angiogenesis. This supports the hypothesis of an advancement in angiogenic signaling in Alzheimer's disease brain. Angiogenesis, perhaps as the result of dysfunctional cerebral vasculature, may be both a consequence and a contributory factor to the etiopathology of the Alzheimer's disease process.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Neovascularização Fisiológica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Idoso , Circulação Cerebrovascular , Humanos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética
20.
Brain Res ; 1584: 73-9, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24709119

RESUMO

MicroRNAs (miRNAs) constitute a relatively recently-discovered class of small non-coding RNAs (sncRNAs) that are gaining considerable attention in the molecular-genetic regulatory mechanisms that contribute to human health and disease. As highly soluble and mobile entities, emerging evidence indicates that miRNAs posess a highly selected ribonucleotide sequence structure, are part of an evolutionary ancient genetic signaling system, resemble the plant pathogens known as viroids in their structure, mode of generation and function, and are very abundant in the physiological fluids that surround cells and tissues. Persistence and altered abundance of miRNAs in the extracellular fluid (ECF) or cerebrospinal fluid (CSF) may play a role in the intercellular spreading of disease systemically, and throughout functionally-linked cellular and tissue systems such as the central nervous system (CNS). This short communication will review some of the more fascinating features of these highly structured single stranded RNAs (ssRNAs) with emphasis on their presence and function in the human CNS, with particular reference to Alzheimer׳s disease (AD) wherever possible.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , MicroRNAs/fisiologia , Viroides/fisiologia , Animais , Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/líquido cefalorraquidiano , Doenças do Sistema Nervoso Central/virologia , Líquido Extracelular/metabolismo , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA