Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 40(5): 1554-1570, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30430687

RESUMO

Activation of parietal cortex structures like the precuneus is commonly observed during explicit memory retrieval, but the role of parietal cortices in encoding has only recently been appreciated and is still poorly understood. Considering the importance of the precuneus in human visual attention and imagery, we aimed to assess a potential role for the precuneus in the encoding of visuospatial representations into long-term memory. We therefore investigated the acquisition of constant versus repeatedly shuffled configurations of icons on background images over five subsequent days in 32 young, healthy volunteers. Functional magnetic resonance imaging was conducted on Days 1, 2, and 5, and persistent memory traces were assessed by a delayed memory test after another 5 days. Constant compared to shuffled configurations were associated with significant improvement of position recognition from Day 1 to 5 and better delayed memory performance. Bilateral dorsal precuneus activations separated constant from shuffled configurations from Day 2 onward, and coactivation of the precuneus and hippocampus dissociated recognized and forgotten configurations, irrespective of condition. Furthermore, learning of constant configurations elicited increased functional coupling of the precuneus with dorsal and ventral visual stream structures. Our results identify the precuneus as a key brain structure in the acquisition of detailed visuospatial information by orchestrating a parieto-occipito-temporal network.


Assuntos
Aprendizagem por Associação/fisiologia , Memória/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Lobo Parietal/diagnóstico por imagem , Estimulação Luminosa , Desempenho Psicomotor , Adulto Jovem
2.
Front Psychol ; 11: 573317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041945

RESUMO

A wide array of species throughout the animal kingdom has shown the ability to distinguish between quantities. Aside from being important for optimal foraging decisions, this ability seems to also be of great relevance in group-living animals as it allows them to inform their decisions regarding engagement in between-group conflicts based on the size of competing groups. However, it is often unclear whether these animals rely on numerical information alone to make these decisions or whether they employ other cues that may covary with the differences in quantity. In this study, we used a touch screen paradigm to investigate the quantity discrimination abilities of two closely related group-living species, wolves and dogs, using a simultaneous visual presentation paradigm. Both species were able to successfully distinguish between stimuli of different quantities up to 32 items and ratios up to 0.80, and their results were in accordance with Weber's law (which predicts worse performances at higher ratios). However, our controls showed that both wolves and dogs may have used continuous, non-numerical cues, such as size and shape of the stimuli, in conjunction with the numerical information to solve this task. In line with this possibility, dogs' performance greatly exceeded that which they had shown in other numerical competence paradigms. We discuss the implications these results may have on these species' underlying biases and numerical capabilities, as well as how our paradigm may have affected the animals' ability to solve the task.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA