RESUMO
PURPOSE: Low SNR in fluorine-19 (19 F) MRI benefits from cryogenically-cooled transceive surface RF probes (CRPs), but strong B1 inhomogeneities hinder quantification. Rapid acquisition with refocused echoes (RARE) is an SNR-efficient method for MRI of neuroinflammation with perfluorinated compounds but lacks an analytical signal intensity equation to retrospectively correct B1 inhomogeneity. Here, a workflow was proposed and validated to correct and quantify 19 F-MR signals from the inflamed mouse brain using a 19 F-CRP. METHODS: In vivo 19 F-MR images were acquired in a neuroinflammation mouse model with a quadrature 19 F-CRP using an imaging setup including 3D-printed components to acquire co-localized anatomical and 19 F images. Model-based corrections were validated on a uniform 19 F phantom and in the neuroinflammatory model. Corrected 19 F-MR images were benchmarked against reference images and overlaid on in vivo 1 H-MR images. Computed concentration uncertainty maps using Monte Carlo simulations served as a measure of performance of the B1 corrections. RESULTS: Our study reports on the first quantitative in vivo 19 F-MR images of an inflamed mouse brain using a 19 F-CRP, including in vivo T1 calculations for 19 F-nanoparticles during pathology and B1 corrections for 19 F-signal quantification. Model-based corrections markedly improved 19 F-signal quantification from errors > 50% to < 10% in a uniform phantom (p < 0.001). Concentration uncertainty maps ex vivo and in vivo yielded uncertainties that were generally < 25%. Monte Carlo simulations prescribed SNR ≥ 10.1 to reduce uncertainties < 10%, and SNR ≥ 4.25 to achieve uncertainties < 25%. CONCLUSION: Our model-based correction method facilitated 19 F signal quantification in the inflamed mouse brain when using the SNR-boosting 19 F-CRP technology, paving the way for future low-SNR 19 F-MRI applications in vivo.
Assuntos
Imageamento por Ressonância Magnética , Doenças Neuroinflamatórias , Animais , Imageamento por Ressonância Magnética/métodos , Camundongos , Imagens de Fantasmas , Ondas de Rádio , Estudos RetrospectivosRESUMO
PURPOSE: Examine the feasibility of characterizing the regulation of renal oxygenation using high-temporal-resolution monitoring of the T2∗ response to a step-like oxygenation stimulus. METHODS: For T2∗ mapping, multi-echo gradient-echo imaging was used (temporal resolution = 9 seconds). A step-like renal oxygenation challenge was applied involving sequential exposure to hyperoxia (100% O2 ), hypoxia (10% O2 + 90% N2 ), and hyperoxia (100% O2 ). In vivo experiments were performed in healthy rats (N = 10) and in rats with bilateral ischemia-reperfusion injury (N = 4). To assess the step response of renal oxygenation, a second-order exponential model was used (model parameters: amplitude [A], time delay [Δt], damping constant [D], and period of the oscillation [T]) for renal cortex, outer stripe of the outer medulla, inner stripe of the outer medulla, and inner medulla. RESULTS: The second-order exponential model permitted us to model the exponential T2∗ recovery and the superimposed T2∗ oscillation following renal oxygenation stimulus. The in vivo experiments revealed a difference in Douter medulla between healthy controls (D < 1, indicating oscillatory recovery) and ischemia-reperfusion injury (D > 1, reflecting aperiodic recovery). The increase in Douter medulla by a factor of 3.7 (outer stripe of the outer medulla) and 10.0 (inner stripe of the outer medulla) suggests that this parameter might be rather sensitive to (patho)physiological oxygenation changes. CONCLUSION: This study demonstrates the feasibility of monitoring the dynamic oxygenation response of renal tissues to a step-like oxygenation challenge using high-temporal-resolution T2∗ mapping. Our results suggest that the implemented system analysis approach may help to unlock questions regarding regulation of renal oxygenation, with the ultimate goal of providing imaging means for diagnostics and therapy of renal diseases.
Assuntos
Hiperóxia , Traumatismo por Reperfusão , Animais , Hiperóxia/diagnóstico por imagem , Hipóxia , Rim/diagnóstico por imagem , Córtex Renal/diagnóstico por imagem , Medula Renal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio , RatosRESUMO
BACKGROUND: Hypertrophic cardiomyopathy (HCM) related myocardial vascular remodelling may lead to the reduction of myocardial blood supply and a subsequent progressive loss of cardiac function. This process has been difficult to observe and thus their connection remains unclear. Here we used non-invasive myocardial blood flow sensitive CMR to show an impairment of resting myocardial perfusion in a mouse model of naturally occurring HCM. METHODS: We used a mouse model (DBA/2 J; D2 mouse strain) that spontaneously carries variants in the two most susceptible HCM genes-Mybpc3 and Myh7 and bears the key features of human HCM. The C57BL/6 J (B6) was used as a reference strain. Mice with either B6 or D2 backgrounds (male: n = 4, female: n = 4) underwent cine-CMR for functional assessment at 9.4 T. Left ventricular (LV) wall thickness was measured in end diastolic phase by cine-CMR. Quantitative myocardial perfusion maps (male: n = 5, female: n = 5 in each group) were acquired from arterial spin labelling (cine ASL-CMR) at rest. Myocardial perfusion values were measured by delineating different regions of interest based on the LV segmentation model in the mid ventricle of the LV myocardium. Directly after the CMR, the mouse hearts were removed for histological assessments to confirm the incidence of myocardial interstitial fibrosis (n = 8 in each group) and small vessel remodelling such as vessel density (n = 6 in each group) and perivascular fibrosis (n = 8 in each group). RESULTS: LV hypertrophy was more pronounced in D2 than in B6 mice (male: D2 LV wall thickness = 1.3 ± 0.1 mm vs B6 LV wall thickness = 1.0 ± 0.0 mm, p < 0.001; female: D2 LV wall thickness = 1.0 ± 0.1 mm vs B6 LV wall thickness = 0.8 ± 0.1 mm, p < 0.01). The resting global myocardial perfusion (myocardial blood flow; MBF) was lower in D2 than in B6 mice (end-diastole: D2 MBFglobal = 7.5 ± 0.6 vs B6 MBFglobal = 9.3 ± 1.6 ml/g/min, p < 0.05; end-systole: D2 MBFglobal = 6.6 ± 0.8 vs B6 MBFglobal = 8.2 ± 2.6 ml/g/min, p < 0.01). This myocardial microvascular dysfunction was observed and associated with a reduction in regional MBF, mainly in the interventricular septal and inferior areas of the myocardium. Immunofluorescence revealed a lower number of vessel densities in D2 than in B6 (D2 capillary = 31.0 ± 3.8% vs B6 capillary = 40.7 ± 4.6%, p < 0.05). Myocardial collagen volume fraction (CVF) was significantly higher in D2 LV versus B6 LV mice (D2 CVF = 3.7 ± 1.4% vs B6 CVF = 1.7 ± 0.7%, p < 0.01). Furthermore, a higher ratio of perivascular fibrosis (PFR) was found in D2 than in B6 mice (D2 PFR = 2.3 ± 1.0%, B6 PFR = 0.8 ± 0.4%, p < 0.01). CONCLUSIONS: Our work describes an imaging marker using cine ASL-CMR with a potential to monitor vascular and myocardial remodelling in HCM.
Assuntos
Cardiomiopatia Hipertrófica , Circulação Coronária , Animais , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/genética , Feminino , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Valor Preditivo dos TestesRESUMO
PURPOSE: To examine the performance of compressed sensing (CS) in reconstructing low signal-to-noise ratio (SNR) 19 F MR signals that are close to the detection threshold and originate from small signal sources with no a priori known location. METHODS: Regularization strength was adjusted automatically based on noise level. As performance metrics, root-mean-square deviations, true positive rates (TPRs), and false discovery rates were computed. CS and conventional reconstructions were compared at equal measurement time and evaluated in relation to high-SNR reference data. 19 F MR data were generated from a purpose-built phantom and benchmarked against simulations, as well as from the experimental autoimmune encephalomyelitis mouse model. We quantified the signal intensity bias and introduced an intensity calibration for in vivo data using high-SNR ex vivo data. RESULTS: Low-SNR 19 F MR data could be reliably reconstructed. Detection sensitivity was consistently improved and data fidelity was preserved for undersampling and averaging factors of α = 2 or = 3. Higher α led to signal blurring in the mouse model. The improved TPRs at α = 3 were comparable to a 2.5-fold increase in measurement time. Whereas CS resulted in a downward bias of the 19 F MR signal, Fourier reconstructions resulted in an unexpected upward bias of similar magnitude. The calibration corrected signal-intensity deviations for all reconstructions. CONCLUSION: CS is advantageous whenever image features are close to the detection threshold. It is a powerful tool, even for low-SNR data with sparsely distributed 19 F signals, to improve spatial and temporal resolution in 19 F MR applications.
Assuntos
Imagem por Ressonância Magnética de Flúor-19 , Algoritmos , Animais , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Camundongos , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
PURPOSE: The use of surface radiofrequency (RF) coils is common practice to boost sensitivity in (pre)clinical MRI. The number of transceive surface RF coils is rapidly growing due to the surge in cryogenically cooled RF technology and ultrahigh-field MRI. Consequently, there is an increasing need for effective correction of the excitation field ( B1+ ) inhomogeneity inherent in these coils. Retrospective B1 correction permits quantitative MRI, but this usually requires a pulse sequence-specific analytical signal intensity (SI) equation. Such an equation is not available for fast spin-echo (Rapid Acquisition with Relaxation Enhancement, RARE) MRI. Here we present, test, and validate retrospective B1 correction methods for RARE. METHODS: We implemented the commonly used sensitivity correction and developed an empirical model-based method and a hybrid combination of both. Tests and validations were performed with a cryogenically cooled RF probe and a single-loop RF coil. Accuracy of SI quantification and T1 contrast were evaluated after correction. RESULTS: The three described correction methods achieved dramatic improvements in B1 homogeneity and significantly improved SI quantification and T1 contrast, with mean SI errors reduced from >40% to >10% following correction in all cases. Upon correction, images of phantoms and mouse heads demonstrated homogeneity comparable to that of images acquired with a volume resonator. This was quantified by SI profile, SI ratio (error < 10%), and percentage of integral uniformity (PIU > 80% in vivo and ex vivo compared to PIU > 87% with the reference RF coil). CONCLUSION: This work demonstrates the efficacy of three B1 correction methods tailored for transceive surface RF probes and RARE MRI. The corrected images are suitable for quantification and show comparable results between the three methods, opening the way for T1 measurements and X-nuclei quantification using surface transceiver RF coils. This approach is applicable to other MR techniques for which no analytical SI exists.
Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Animais , Camundongos , Imagens de Fantasmas , Estudos RetrospectivosRESUMO
OBJECTIVE: Design, implementation, evaluation and application of a quadrature birdcage radiofrequency (RF) resonator tailored for renal and cardiac sodium (23Na) magnetic resonance imaging (MRI) in rats at 9.4 T. MATERIALS AND METHODS: A low pass birdcage resonator (16 rungs, din = 62 mm) was developed. The transmission field (B1+) was examined with EMF simulations. The scattering parameter (S-parameter) and the quality factor (Q-factor) were measured. For experimental validation B1+-field maps were acquired with the double-angle method. In vivo sodium imaging of the heart (spatial resolution: (1 × 1 × 5) mm3) and kidney (spatial resolution: (1 × 1 × 10) mm3) was performed with a FLASH technique. RESULTS: The RF resonator exhibits RF characteristics, transmission field homogeneity and penetration that afford 23Na MR in vivo imaging of the kidney and heart at 9.4 T. For the renal cortex and medulla a SNRs of 8 and 13 were obtained and a SNRs of 14 and 15 were observed for the left and right ventricle. DISCUSSION: These initial results obtained in vivo in rats using the quadrature birdcage volume RF resonator for 23Na MRI permit dedicated studies on experimental models of cardiac and renal diseases, which would contribute to translational research of the cardiorenal syndrome.
Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Isótopos de Sódio , Animais , Calibragem , Desenho de Equipamento , Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Miocárdio , Imagens de Fantasmas , Ondas de Rádio , Ratos , Razão Sinal-Ruído , Transdutores , Pesquisa Translacional BiomédicaRESUMO
PURPOSE: The potential of renal MRI biomarkers has been increasingly recognised, but clinical translation requires more standardisation. The PARENCHIMA consensus project aims to develop and apply a process for generating technical recommendations on renal MRI. METHODS: A task force was formed in July 2018 focused on five methods. A draft process for attaining consensus was distributed publicly for consultation and finalised at an open meeting (Prague, October 2018). Four expert panels completed surveys between October 2018 and March 2019, discussed results and refined the surveys at a face-to-face meeting (Aarhus, March 2019) and completed a second round (May 2019). RESULTS: A seven-stage process was defined: (1) formation of expert panels; (2) definition of the context of use; (3) literature review; (4) collection and comparison of MRI protocols; (5) consensus generation by an approximate Delphi method; (6) reporting of results in vendor-neutral and vendor-specific terms; (7) ongoing review and updating. Application of the process resulted in 166 consensus statements. CONCLUSION: The process generated meaningful technical recommendations across very different MRI methods, while allowing for improvement and refinement as open issues are resolved. The results are likely to be widely supported by the renal MRI community and thereby promote more harmonisation.
Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Nefrologia/normas , Pesquisa Translacional Biomédica/normas , Biomarcadores/metabolismo , Consenso , Técnica Delphi , Europa (Continente) , Prova Pericial , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/tendências , Nefrologia/tendências , Padrões de Referência , Inquéritos e Questionários , Pesquisa Translacional Biomédica/tendências , Estados UnidosRESUMO
OBJECTIVES: Standardization is an important milestone in the validation of DWI-based parameters as imaging biomarkers for renal disease. Here, we propose technical recommendations on three variants of renal DWI, monoexponential DWI, IVIM and DTI, as well as associated MRI biomarkers (ADC, D, D*, f, FA and MD) to aid ongoing international efforts on methodological harmonization. MATERIALS AND METHODS: Reported DWI biomarkers from 194 prior renal DWI studies were extracted and Pearson correlations between diffusion biomarkers and protocol parameters were computed. Based on the literature review, surveys were designed for the consensus building. Survey data were collected via Delphi consensus process on renal DWI preparation, acquisition, analysis, and reporting. Consensus was defined as ≥ 75% agreement. RESULTS: Correlations were observed between reported diffusion biomarkers and protocol parameters. Out of 87 survey questions, 57 achieved consensus resolution, while many of the remaining questions were resolved by preference (65-74% agreement). Summary of the literature and survey data as well as recommendations for the preparation, acquisition, processing and reporting of renal DWI were provided. DISCUSSION: The consensus-based technical recommendations for renal DWI aim to facilitate inter-site harmonization and increase clinical impact of the technique on a larger scale by setting a framework for acquisition protocols for future renal DWI studies. We anticipate an iterative process with continuous updating of the recommendations according to progress in the field.
Assuntos
Biomarcadores/metabolismo , Imagem de Difusão por Ressonância Magnética , Rim/diagnóstico por imagem , Pesquisa Translacional Biomédica , Algoritmos , Consenso , Técnica Delphi , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Rim/metabolismo , Modelos Estatísticos , Movimento (Física) , Reprodutibilidade dos Testes , Inquéritos e QuestionáriosRESUMO
The article Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI.
RESUMO
Harmonization of acquisition and analysis protocols is an important step in the validation of BOLD MRI as a renal biomarker. This harmonization initiative provides technical recommendations based on a consensus report with the aim to move towards standardized protocols that facilitate clinical translation and comparison of data across sites. We used a recently published systematic review paper, which included a detailed summary of renal BOLD MRI technical parameters and areas of investigation in its supplementary material, as the starting point in developing the survey questionnaires for seeking consensus. Survey data were collected via the Delphi consensus process from 24 researchers on renal BOLD MRI exam preparation, data acquisition, data analysis, and interpretation. Consensus was defined as ≥ 75% unanimity in response. Among 31 survey questions, 14 achieved consensus resolution, 12 showed clear respondent preference (65-74% agreement), and 5 showed equal (50/50%) split in opinion among respondents. Recommendations for subject preparation, data acquisition, processing and reporting are given based on the survey results and review of the literature. These technical recommendations are aimed towards increased inter-site harmonization, a first step towards standardization of renal BOLD MRI protocols across sites. We expect this to be an iterative process updated dynamically based on progress in the field.
Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/tendências , Animais , Biomarcadores/metabolismo , Consenso , Técnica Delphi , Humanos , Rim/metabolismo , Imageamento por Ressonância Magnética/normas , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Inquéritos e Questionários , Pesquisa Translacional Biomédica/tendênciasRESUMO
OBJECTIVE: Fluorine MR would benefit greatly from enhancements in signal-to-noise ratio (SNR). This study examines the sensitivity gain of 19F MR that can be practically achieved when moving from 9.4 to 21.1 T. MATERIALS AND METHODS: We studied perfluoro-15-crown-5-ether (PFCE) at both field strengths (B0), as a pure compound, in the form of nanoparticles (NP) as employed to study inflammation in vivo, as well as in inflamed tissue. Brains, lymph nodes (LNs) and spleens were obtained from mice with experimental autoimmune encephalomyelitis (EAE) that had been administered PFCE NPs. All samples were measured at both B0 with 2D-RARE and 2D-FLASH using 19F volume radiofrequency resonators together. T1 and T2 of PFCE were measured at both B0 strengths. RESULTS: Compared to 9.4 T, an SNR gain of > 3 was observed for pure PFCE and > 2 for PFCE NPs at 21.1 T using 2D-FLASH. A dependency of 19F T1 and T2 relaxation on B0 was demonstrated. High spatially resolved 19F MRI of EAE brains and LNs at 21.1 T revealed signals not seen at 9.4 T. DISCUSSION: Enhanced SNR and T1 shortening indicate the potential benefit of in vivo 19F MR at higher B0 to study inflammatory processes with greater detail.
Assuntos
Éteres de Coroa/química , Imagem por Ressonância Magnética de Flúor-19 , Flúor/química , Inflamação/tratamento farmacológico , Animais , Encéfalo/diagnóstico por imagem , Calibragem , Meios de Contraste/química , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Feminino , Linfonodos/diagnóstico por imagem , Camundongos , Nanopartículas , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído , Marcadores de Spin , Baço/diagnóstico por imagemRESUMO
The neuromatrix, or "pain matrix", is a network of cortical brain areas which is activated by noxious as well as salient somatosensory stimulation. This has been studied in mice and humans using blood oxygenation level-dependent (BOLD) fMRI. Here we demonstrate that BOLD effects observed in the murine neuromatrix in response to salient somatosensory stimuli are prone to reflect mean arterial blood pressure (MABP) changes, rather than neural activity. We show that a standard electrostimulus typically used in murine somatosensory fMRI can induce substantial elevations in MABP. Equivalent drug-induced MABP changes - without somatosensory stimulation - evoked BOLD patterns in the neuromatrix strikingly similar to those evoked by electrostimulation. This constitutes a serious caveat for murine fMRI. The regional specificity of these BOLD patterns can be attributed to the co-localization of the neuromatrix with large draining veins. Based on these findings we propose a cardiovascular support mechanism whereby abrupt elevations in MABP provide additional energy supply to the neuromatrix and other essential brain areas in fight-or-flight situations.
Assuntos
Pressão Sanguínea/fisiologia , Encéfalo/fisiopatologia , Nociceptividade/fisiologia , Dor Nociceptiva/fisiopatologia , Animais , Mapeamento Encefálico/métodos , Estimulação Elétrica , Potenciais Somatossensoriais Evocados/fisiologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
PURPOSE: Proton radiation therapy (PRT) is a standard treatment of uveal melanoma. PRT patients undergo implantation of ocular tantalum markers (OTMs) for treatment planning. Ultra-high-field MRI is a promising technique for 3D tumor visualization and PRT planning. This work examines MR safety and compatibility of OTMs at 7.0 Tesla. METHODS: MR safety assessment included deflection angle measurements (DAMs), electromagnetic field (EMF) simulations for specific absorption rate (SAR) estimation, and temperature simulations for examining radiofrequency heating using a bow-tie dipole antenna for transmission. MR compatibility was assessed by susceptibility artifacts in agarose, ex vivo pig eyes, and in an ex vivo tumor eye using gradient echo and fast spin-echo imaging. RESULTS: DAM (α < 1 °) demonstrated no risk attributed to magnetically induced OTM deflection. EMF simulations showed that an OTM can be approximated by a disk, demonstrated the need for averaging masses of mave = 0.01 g to accommodate the OTM, and provided SAR0.01g,maximum = 2.64 W/kg (Pin = 1W) in OTM presence. A transfer function was derived, enabling SAR0.01g estimation for individual patient scenarios without the OTM being integrated. Thermal simulations revealed minor OTM-related temperature increase (δT < 15 mK). Susceptibility artifact size (<8 mm) and location suggest no restrictions for MRI of the nervus opticus. CONCLUSION: OTMs are not a per se contraindication for MRI. Magn Reson Med 78:1533-1546, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Assuntos
Imageamento por Ressonância Magnética/métodos , Melanoma/diagnóstico por imagem , Melanoma/radioterapia , Terapia com Prótons/normas , Tantálio/análise , Neoplasias Uveais/diagnóstico por imagem , Neoplasias Uveais/radioterapia , Animais , Temperatura Alta , Humanos , Segurança do Paciente , Imagens de Fantasmas , Terapia com Prótons/métodos , Suínos , Tantálio/químicaRESUMO
PURPOSE: Myocardial effective relaxation time T2* is commonly regarded as a surrogate for myocardial tissue oxygenation. However, it is legitimate to assume that there are multiple factors that influence T2*. To this end, this study investigates the relationship between T2* and cardiac macromorphology given by left ventricular (LV) wall thickness and left ventricular radius, and provides interpretation of the results in the physiological context. METHODS: High spatio-temporally resolved myocardial CINE T2* mapping was performed in 10 healthy volunteers using a 7.0 Tesla (T) full-body MRI system. Ventricular septal wall thickness, left ventricular inner radius, and T2* were analyzed. Macroscopic magnetic field changes were elucidated using cardiac phase-resolved magnetic field maps. RESULTS: Ventricular septal T2* changes periodically over the cardiac cycle, increasing in systole and decreasing in diastole. Ventricular septal wall thickness and T2* showed a significant positive correlation, whereas the inner LV radius and T2* were negatively correlated. The effect of macroscopic magnetic field gradients on T2* can be considered minor in the ventricular septum. CONCLUSION: Our findings suggest that myocardial T2* is related to tissue blood volume fraction. Temporally resolved T2* mapping could be beneficial for myocardial tissue characterization and for understanding cardiac (patho)physiology in vivo. Magn Reson Med 77:2381-2389, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Assuntos
Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Função Ventricular Esquerda/fisiologia , Adulto , Feminino , Humanos , Masculino , Tamanho do Órgão/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Cerebrovascular abnormality is frequently accompanied by cognitive dysfunctions, such as dementia. Antibodies against the α1 -adrenoceptor (α1 -AR) can be found in patients with Alzheimer's disease with cerebrovascular disease, and have been shown to affect the larger vessels of the brain in rodents. However, the impact of α1 -AR antibodies on the cerebral vasculature remains unclear. In the present study, we established a neuroimaging method to measure the relative cerebral blood volume (rCBV) in small rodents with the ultimate goal to detect changes in blood vessel density and/or vessel size induced by α1 -AR antibodies. For this purpose, mapping of R2 * and R2 was performed using MRI at 9.4 T, before and after the injection of intravascular iron oxide particles (ferumoxytol). The change in the transverse relaxation rates (ΔR2 *, ΔR2 ) showed a significant rCBV decrease in the cerebrum, cortex and hippocampus of rats (except hippocampal ΔR2 ), which was more pronounced for ΔR2 * than for ΔR2 . Immunohistological analyses confirmed that the α1 -AR antibody induced blood vessel deficiencies. Our findings support the hypothesis that α1 -AR antibodies lead to cerebral vessel damage throughout the brain, which can be monitored by MRI-derived rCBV, a non-invasive neuroimaging method. This demonstrates the value of rCBV estimation by ferumoxytol-enhanced MRI at 9.4 T, and further underlines the significance of this antibody in brain diseases involving vasculature impairments, such as dementia.
Assuntos
Autoanticorpos/imunologia , Volume Sanguíneo/imunologia , Circulação Cerebrovascular/imunologia , Óxido Ferroso-Férrico , Angiografia por Ressonância Magnética/métodos , Receptores Adrenérgicos alfa 1/imunologia , Animais , Velocidade do Fluxo Sanguíneo/imunologia , Determinação do Volume Sanguíneo/métodos , Meios de Contraste , Masculino , Microvasos/imunologia , Microvasos/patologia , Ratos , Ratos WistarRESUMO
High-grade gliomas are the most common primary brain tumors. Their malignancy is promoted by the complex crosstalk between different cell types in the central nervous system. Microglia/brain macrophages infiltrate high-grade gliomas and contribute to their progression. To identify factors that mediate the attraction of microglia/macrophages to malignant brain tumors, we established a glioma cell encapsulation model that was applied in vivo. Mouse GL261 glioma cell line and human high-grade glioma cells were seeded into hollow fibers (HF) that allow the passage of soluble molecules but not cells. The glioma cell containing HF were implanted into one brain hemisphere and simultaneously HF with non-transformed fibroblasts (controls) were introduced into the contralateral hemisphere. Implanted mouse and human glioma- but not fibroblast-containing HF attracted microglia and up-regulated immunoreactivity for GFAP, which is a marker of astrogliosis. In this study, we identified GDNF as an important factor for microglial attraction: (1) GL261 and human glioma cells secret GDNF, (2) reduced GDNF production by siRNA in GL261 in mouse glioma cells diminished attraction of microglia, (3) over-expression of GDNF in fibroblasts promoted microglia attraction in our HF assay. In vitro migration assays also showed that GDNF is a strong chemoattractant for microglia. While GDNF release from human or mouse glioma had a profound effect on microglial attraction, the glioma-induced astrogliosis was not affected. Finally, we could show that injection of GL261 mouse glioma cells with GDNF knockdown by shRNA into mouse brains resulted in reduced tumor expansion and improved survival as compared to injection of control cells.
Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glioblastoma/metabolismo , Gliose/metabolismo , Microglia/metabolismo , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quimiotaxia , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glioblastoma/genética , Glioblastoma/patologia , Gliose/genética , Gliose/patologia , Humanos , Camundongos , Microglia/patologia , Transplante de NeoplasiasAssuntos
Meios de Contraste , Rim , Animais , Testes de Função Renal , Imageamento por Ressonância Magnética , Ratos , ViscosidadeRESUMO
PURPOSE: To assess pretreatment functional and morphological tumor characteristics with magnetic resonance imaging (MRI) in advanced rectal carcinoma and to identify factors predicting response to neoadjuvant chemoradiation. MATERIALS AND METHODS: In a prospective study, 95 patients with rectal carcinoma underwent dynamic contrast-enhanced MRI before and after chemoradiation. Quantitative parameters were derived from a pharmacokinetic two-compartment model. Tumors were also characterized with regard to mucinous status at pretreatment high-resolution MRI as nonmucinous or mucinous. Response to treatment was defined as a downshift in the local tumor stage. RESULTS: The parameter k21 (contrast medium exchange rate) was higher at pretreatment MRI in nonmucinous compared with mucinous carcinomas (P < 0.001). The effect of chemoradiation on dynamic MR parameters was higher in nonmucinous carcinomas than in the mucinous subtype (P < 0.001). A higher rate of response to treatment was linked with nonmucinous morphology (P < 0.001). Multivariate analysis revealed an association between mucinous tumor morphology and poor response (odds ratio [95% confidence interval]: 0.113 [0.032-0.395], P < 0.001) as well as an association between a high 75th percentile of k21 and a higher response rate (odds ratio: 1.043 [1.001-1.086], P = 0.019). CONCLUSION: Functional and morphological parameters of pretreatment MRI can assess tumor characteristics associated with the effectiveness of chemoradiation before treatment initiation.
Assuntos
Adenocarcinoma Mucinoso/patologia , Adenocarcinoma Mucinoso/terapia , Quimiorradioterapia Adjuvante/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Adenocarcinoma Mucinoso/epidemiologia , Adulto , Idoso , Meios de Contraste , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante/estatística & dados numéricos , Prevalência , Prognóstico , Neoplasias Retais/epidemiologia , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade , Resultado do TratamentoRESUMO
The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, ß1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted ß1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for ß1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.
RESUMO
Magnetic resonance imaging (MRI) is an emerging method to obtain valuable functional and structural information about the kidney noninvasively. Before performing specialized MR measurements for probing tissue structure and function, some essential practical steps are needed, which are common for most applications. Here we describe in a step-by-step manner how to (1) achieve the double-oblique slice orientation coronal-to-the-kidney, (2) adapt the scan protocol for avoiding aortic flow artifacts and covering both kidneys, (3) perform localized shimming on the kidney, and (4) check perfusion in the large renal blood vessels using time-of-flight (TOF) angiography. The procedures are tailored to preclinical MRI but conceptionally are also applicable to human MRI.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter explains the initial and essential MRI steps that precede specific functional and structural MR imaging techniques (T1- and T2*-mapping, DWI , ASL , etc.), which are described in separate chapters.