Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 25(6): 1546-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26552263

RESUMO

Community structure and interspecific interactions are particularly vulnerable to rapidly changing climatic regimes. Recent changes in both climate and vertebrate community assemblages have created a unique opportunity to examine the impacts of two dynamic forces on population regulation. We examined the effects of warming winter conditions and the reestablishment of a previously extirpated predator, the fisher (Martes pennanti), on regulatory mechanisms in a northern-adapted mammal, the porcupine (Erethizon dorsatum), along their southern range boundary. Using a long-term (17-year) capture-recapture data set, we (1) quantified the impacts of climate change and increased fisher predation on the survival of adult porcupines at their regional southern terminus, (2) assessed recruitment (via both adult fecundity and juvenile survival) of porcupines, and (3) modeled the relative importance of predation and winter conditions on the demography and population growth rate (λ). Severe winters and abundant predators interacted synergistically to reduce adult survivorship by as much as 44%, while expanding predator populations led to near reproductive failure among porcupines. Increasing predatory pressure, disruptions in this community module, and more frequent extreme winter weather events led to predicted extirpation within 50 years, whereas in the absence of predators, the population was viable. Our results provide a mechanistic understanding behind distributional shifts resulting from climate change and may be broadly relevant for predicting future distributional shifts in other northern-adapted mammalian species.


Assuntos
Mudança Climática , Porcos-Espinhos/fisiologia , Comportamento Predatório , Animais , Feminino , Masculino , Modelos Biológicos , Mustelidae/fisiologia , Dinâmica Populacional , Fatores de Tempo
2.
Conserv Biol ; 29(5): 1257-67, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25855043

RESUMO

Conservation biologists are generally united in efforts to curtail the spread of non-native species globally. However, the colonization history of a species is not always certain, and whether a species is considered non-native or native depends on the conservation benchmark. Such ambiguities have led to inconsistent management. Within the Tongass National Forest of Alaska, the status of American marten (Martes americana) on the largest, most biologically diverse and deforested island, Prince of Wales (POW), is unclear. Ten martens were released to POW in the early 1930s, and it was generally believed to be the founding event, although this has been questioned. The uncertainty surrounding when and how martens colonized POW complicates management, especially because martens were selected as a design species for the Tongass. To explore the history of martens of POW we reviewed other plausible routes of colonization; genetically and isotopically analyzed putative marten fossils deposited in the late Pleistocene and early Holocene to verify marten occupancy of POW; and used contemporary genetic data from martens on POW and the mainland in coalescent simulations to identify the probable source of the present-day marten population on POW. We found evidence for multiple routes of colonization by forest-associated mammals beginning in the Holocene, which were likely used by American martens to naturally colonize POW. Although we cannot rule out human-assisted movement of martens by Alaskan Natives or fur trappers, we suggest that martens be managed for persistence on POW. More generally, our findings illustrate the difficulty of labeling species as non-native or native, even when genetic and paleo-ecological data are available, and support the notion that community resilience or species invasiveness should be prioritized when making management decisions rather than more subjective and less certain conservation benchmarks.


Assuntos
Conservação dos Recursos Naturais , Mustelidae/fisiologia , Alaska , Distribuição Animal , Animais , Fósseis , Ilhas , Mustelidae/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA