Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Anat ; 235(3): 452-467, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30901089

RESUMO

Myelination of axons by oligodendrocytes in the central nervous system is crucial for fast, saltatory conduction of action potentials. As myelination is central for brain development and plasticity, and deficits are implicated in several neural disorders such as multiple sclerosis, major depressive disorder, bipolar disorder and schizophrenia, it is important to elucidate the underlying mechanisms regulating myelination. Numerous mechanisms have been proposed by which the communication between oligodendrocytes and active axons may regulate the onset and maintenance of activity-dependent myelination. We compared two models of 'silencing' layer V and/or VI cortical projection neurons from early stages by either decreasing their excitability through Kir2.1 expression, an inward rectifying potassium channel, introduced through in utero electroporation at embryonic day (E)13.5, or inhibiting regulated vesicular release through Cre-dependent knock-out of synaptosomal associated protein 25 kDA (SNAP25). SNAP25 is a component of the soluble N-ethylmaleimide fusion protein attachment protein receptor (SNARE) complex, which, among others, is needed for calcium-dependent regulated vesicle release from synapses. In layer VI cortical projection neurons in the Ntsr1-Cre;Ai14;Snap25 fl/fl mouse, we found that inhibiting regulated vesicular release significantly decreased the amount of myelin basic protein (MBP, used as marker for myelination) and the amount of myelinated projections at postnatal day (P)14 without affecting the initial timing of onset of myelination in the brain (at P7/P8). Additionally, overall oligodendrocyte maturation appears to be affected. A strong trend towards reduced node of Ranvier (NoR) length was also observed in Ntsr1-Cre;Ai14;Snap25 fl/fl corpus callosum. An equally strong trend towards reduced NoR length was observed in Rbp4-Cre;Ai14;Snap25 fl/fl corpus callosum at P14, and the g-ratio in the spinal cord dorsal column was reduced at P18. However, no measurable differences in levels of MBP were detected in the striatum when comparing Rbp4-Cre;Ai14;Snap25 fl/fl and control brains. Conversely, Kir2.1 in utero electroporation at E13.5 did not significantly affect the amount of MBP or number of myelinated callosal axons at P14 but did significantly decrease the NoR length measured in the corpus callosum. It therefore seems likely that the excitability of the neuron can potentially perform a modulating function of myelin characteristics, whereas regulated vesicular release has the potential to have a more pronounced effect on overall myelination, but in a cell-type specific manner.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Bainha de Mielina/metabolismo , Animais , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/ultraestrutura , Gravidez
2.
Cereb Cortex ; 28(2): 493-509, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031177

RESUMO

Mice that are constitutively null for the zinc finger doublesex and mab-3 related (Dmrt) gene, Dmrt5/Dmrta2, show a variety of patterning abnormalities in the cerebral cortex, including the loss of the cortical hem, a powerful cortical signaling center. In conditional Dmrt5 gain of function and loss of function mouse models, we generated bidirectional changes in the neocortical area map without affecting the hem. Analysis indicated that DMRT5, independent of the hem, directs the rostral-to-caudal pattern of the neocortical area map. Thus, DMRT5 joins a small number of transcription factors shown to control directly area size and position in the neocortex. Dmrt5 deletion after hem formation also reduced hippocampal size and shifted the position of the neocortical/paleocortical boundary. Dmrt3, like Dmrt5, is expressed in a gradient across the cortical primordium. Mice lacking Dmrt3 show cortical patterning defects akin to but milder than those in Dmrt5 mutants, perhaps in part because Dmrt5 expression increases in the absence of Dmrt3. DMRT5 upregulates Dmrt3 expression and negatively regulates its own expression, which may stabilize the level of DMRT5. Together, our findings indicate that finely tuned levels of DMRT5, together with DMRT3, regulate patterning of the cerebral cortex.


Assuntos
Desenvolvimento Embrionário/fisiologia , Hipocampo/metabolismo , Neocórtex/metabolismo , Fatores de Transcrição/biossíntese , Animais , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neurogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA