Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 566(7743): E5, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30670874

RESUMO

In this Letter, the affiliation for Christian Gross should have been 'Max-Planck-Institut für Quantenoptik, Garching, Germany' instead of 'Fakultät für Physik, Ludwig-Maximilians-Universität, Munich, Germany'; this has been corrected online.

2.
Nature ; 565(7737): 56-60, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542155

RESUMO

The interplay between magnetism and doping is at the origin of exotic strongly correlated electronic phases and can lead to novel forms of magnetic ordering. One example is the emergence of incommensurate spin-density waves, which have wavevectors that do not belong to the reciprocal lattice. In one dimension this effect is a hallmark of Luttinger liquid theory, which also describes the low-energy physics of the Hubbard model1. Here we use a quantum simulator that uses ultracold fermions in an optical lattice2-8 to directly observe such incommensurate spin correlations in doped and spin-imbalanced Hubbard chains using fully spin- and density-resolved quantum gas microscopy. Doping is found to induce a linear change in the spin-density wavevector, in excellent agreement with predictions from Luttinger theory. For non-zero polarization we observe a reduction in the wavevector with magnetization, as expected from the antiferromagnetic Heisenberg model in a magnetic field. We trace the microscopic-scale origin of these incommensurate correlations to holes, doublons (double occupancies) and excess spins, which act as delocalized domain walls for the antiferromagnetic order. In addition, by inducing interchain coupling we observe fundamentally different spin correlations around doublons and suppression of incommensurate magnetism at finite (low) temperature in the two-dimensional regime9. Our results demonstrate how access to the full counting statistics of all local degrees of freedom can be used to study fundamental phenomena in strongly correlated many-body physics.

3.
Phys Rev Lett ; 128(25): 255301, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35802435

RESUMO

The unique superflow-through-solid effect observed in solid ^{4}He and attributed to the quasi-one-dimensional superfluidity along the dislocation cores exhibits two extraordinary features: (i) an exponentially strong suppression of the flow by a moderate increase in pressure and (ii) an unusual temperature dependence of the flow rate with no analogy to any known system and in contradiction with the standard Luttinger liquid paradigm. Based on ab initio and model simulations, we argue that the two features are closely related: Thermal fluctuations of the shape of a superclimbing edge dislocation induce large, correlated, and asymmetric stress fields acting on the superfluid core. The critical flux is most sensitive to strong rare fluctuations and hereby acquires a sharp temperature dependence observed in experiments.

4.
Phys Rev Lett ; 129(23): 230502, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563231

RESUMO

Fracton models provide examples of novel gapped quantum phases of matter that host intrinsically immobile excitations and therefore lie beyond the conventional notion of topological order. Here, we calculate optimal error thresholds for quantum error correcting codes based on fracton models. By mapping the error-correction process for bit-flip and phase-flip noises into novel statistical models with Ising variables and random multibody couplings, we obtain models that exhibit an unconventional subsystem symmetry instead of a more usual global symmetry. We perform large-scale parallel tempering Monte Carlo simulations to obtain disorder-temperature phase diagrams, which are then used to predict optimal error thresholds for the corresponding fracton code. Remarkably, we found that the X-cube fracton code displays a minimum error threshold (7.5%) that is much higher than 3D topological codes such as the toric code (3.3%), or the color code (1.9%). This result, together with the predicted absence of glass order at the Nishimori line, shows great potential for fracton phases to be used as quantum memory platforms.

5.
Phys Rev Lett ; 125(25): 256401, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416402

RESUMO

We study the interplay of spin and charge degrees of freedom in a doped Ising antiferromagnet, where the motion of charges is restricted to one dimension. The phase diagram of this mixed-dimensional t-J_{z} model can be understood in terms of spinless chargons coupled to a Z_{2} lattice gauge field. The antiferromagnetic couplings give rise to interactions between Z_{2} electric field lines which, in turn, lead to a robust stripe phase at low temperatures. At higher temperatures, a confined meson-gas phase is found for low doping whereas at higher doping values, a robust deconfined chargon-gas phase is seen, which features hidden antiferromagnetic order. We confirm these phases in quantum Monte Carlo simulations. Our model can be implemented and its phases detected with existing technology in ultracold atom experiments. The critical temperature for stripe formation with a sufficiently high hole concentration is around the spin-exchange energy J_{z}, i.e., well within reach of current experiments.

6.
Nature ; 569(7757): 494-495, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31114094
7.
Phys Rev Lett ; 123(7): 076601, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31491114

RESUMO

In a number of physical situations, from polarons to Dirac liquids and to non-Fermi liquids, one encounters the "beyond quasiparticles" regime, in which the inelastic scattering rate exceeds the thermal energy of quasiparticles. Transport in this regime cannot be described by the kinetic equation. We employ the diagrammatic Monte Carlo method to study the mobility of a Fröhlich polaron in this regime and discover a number of nonperturbative effects: a strong violation of the Mott-Ioffe-Regel criterion at intermediate and strong couplings, a mobility minimum at Tâˆ¼Ω in the strong-coupling limit (Ω is the optical mode frequency), a substantial delay in the onset of an exponential dependence of the mobility for T<Ω at intermediate coupling, and complete smearing of the Drude peak at strong coupling. These effects should be taken into account when interpreting mobility data in materials with strong electron-phonon coupling.

8.
Phys Rev Lett ; 117(12): 120402, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689256

RESUMO

We show how the thermodynamic properties of large many-body localized systems can be studied using quantum Monte Carlo simulations. We devise a heuristic way of constructing local integrals of motion of high quality, which are added to the Hamiltonian in conjunction with Lagrange multipliers. The ground state simulation of the shifted Hamiltonian corresponds to a high-energy state of the original Hamiltonian in the case of exactly known local integrals of motion. The inevitable mixing between eigenstates as a consequence of nonperfect integrals of motion is weak enough such that the characteristics of many-body localized systems are not averaged out, unlike the standard ensembles of statistical mechanics. Our method paves the way to study higher dimensions and indicates that a fully many-body localized phase in 2D, where (nearly) all eigenstates are localized, is likely to exist.

9.
Phys Rev Lett ; 113(4): 045301, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105627

RESUMO

The ground state of (4)He confined in a system with the topology of cylinder can display properties of solid, superfluid, and liquid crystal. This phase, which we call a compactified supersolid (CSS), originates from wrapping the basal planes of the bulk hcp solid into concentric cylindrical shells, with several central shells exhibiting superfluidity along the axial direction. Its main feature is the presence of a topological defect which can be viewed as a disclination with Frank index n = 1 observed in liquid crystals, and which, in addition, has a superfluid core. The CSS as well as its transition to an insulating compactified solid with a very wide hysteresis loop are found by ab initio Monte Carlo simulations. A simple analytical model captures qualitatively correctly the main property of the CSS--a gradual decrease of the superfluid response with increasing pressure.

10.
Phys Rev Lett ; 113(26): 260403, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615290

RESUMO

We study the ground state phase diagram of a one-dimensional hard-core bosonic model with nearest-neighbor interactions (XXZ model) where every site is coupled Ohmically to an independent but identical reservoir, hereby generalizing spin-boson models to interacting spin-boson systems. We show that a bath-induced Bose liquid phase can occur in the ground state phase diagram away from half filling. This phase is compressible, gapless, and conducting but not superfluid. At half filling, only a Luttinger liquid and a charge density wave are found. The phase transition between them is of Kosterlitz-Thouless type where the Luttinger parameter takes a nonuniversal value. The applied quantum Monte Carlo method can be used for all open bosonic and unfrustrated spin systems, regardless of their dimension, filling factor, and spectrum of the dissipation as long as the quantum system couples to the bath via the density operators.

11.
Phys Rev Lett ; 112(3): 030402, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24484123

RESUMO

We compute the universal conductivity of the (2+1)-dimensional XY universality class, which is realized for a superfluid-to-Mott insulator quantum phase transition at constant density. Based on large-scale Monte Carlo simulations of the classical (2+1)-dimensional J-current model and the two-dimensional Bose-Hubbard model, we can precisely determine the conductivity on the quantum critical plateau, σ(∞) = 0.359(4)σQ with σQ the conductivity quantum. The universal conductivity curve is the standard example with the lowest number of components where the bottoms-up AdS/CFT correspondence from string theory can be tested and made to use [R. C. Myers, S. Sachdev, and A. Singh, Phys. Rev. D 83, 066017 (2011)]. For the first time, the shape of the σ(iω(n)) - σ(∞) function in the Matsubara representation is accurate enough for a conclusive comparison and establishes the particlelike nature of charge transport. We find that the holographic gauge-gravity duality theory for transport properties can be made compatible with the data if temperature of the horizon of the black brane is different from the temperature of the conformal field theory. The requirements for measuring the universal conductivity in a cold gas experiment are also determined by our calculation.

12.
Phys Rev Lett ; 113(19): 195301, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415910

RESUMO

We study attractively interacting fermions on a square lattice with dispersion relations exhibiting strong spin-dependent anisotropy. The resulting Fermi surface mismatch suppresses the s-wave BCS-type instability, clearing the way for unconventional types of order. Unbiased sampling of the Feynman diagrammatic series using diagrammatic Monte Carlo methods reveals a rich phase diagram in the regime of intermediate coupling strength. Instead of a proposed Cooper-pair Bose metal phase [A. E. Feiguin and M. P. A. Fisher, Phys. Rev. Lett. 103, 025303 (2009)], we find an incommensurate density wave at strong anisotropy and two different p-wave superfluid states with unconventional symmetry at intermediate anisotropy.

13.
Phys Rev Lett ; 110(17): 170403, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679688

RESUMO

We present spectral functions for the magnitude squared of the order parameter in the scaling limit of the two-dimensional superfluid to Mott insulator quantum phase transition at constant density, which has emergent particle-hole symmetry and Lorentz invariance. The universal functions for the superfluid, Mott insulator, and normal liquid phases reveal a low-frequency resonance which is relatively sharp and is followed by a damped oscillation (in the first two phases only) before saturating to the quantum critical plateau. The counterintuitive resonance feature in the insulating and normal phases calls for deeper understanding of collective modes in the strongly coupled (2+1)-dimensional relativistic field theory. Our results are derived from analytically continued correlation functions obtained from path-integral Monte Carlo simulations of the Bose-Hubbard model.

14.
Rep Prog Phys ; 75(9): 094501, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22885729

RESUMO

This is a review of recent developments in Monte Carlo methods in the field of ultracold gases. For bosonic atoms in an optical lattice we discuss path-integral Monte Carlo simulations with worm updates and show the excellent agreement with cold atom experiments. We also review recent progress in simulating bosonic systems with long-range interactions, disordered bosons, mixtures of bosons and spinful bosonic systems. For repulsive fermionic systems, determinantal methods at half filling are sign free, but in general no sign-free method exists. We review the developments in diagrammatic Monte Carlo for the Fermi polaron problem and the Hubbard model, and show the connection with dynamical mean-field theory. We end the review with diffusion Monte Carlo for the Stoner problem in cold gases.


Assuntos
Gases/química , Modelos Químicos , Modelos Moleculares , Método de Monte Carlo , Teoria Quântica , Temperatura Baixa , Simulação por Computador
15.
Phys Rev Lett ; 109(20): 206401, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215511

RESUMO

We calculate the phase diagram of the Bose-Fermi Hubbard model on the 3d cubic lattice at fermionic half filling and bosonic unit filling by means of single-site dynamical mean-field theory. For fast bosons, this is equivalent to the Cooper problem in which the bosons can induce s-wave pairing between the fermions. We also find miscible superfluid and canted supersolid phases depending on the interspecies coupling strength. In contrast, slow bosons favor fermionic charge density wave structures for attractive fermionic interactions. These competing instabilities lead to a rich phase diagram within reach of cold gas experiments.

16.
Phys Rev Lett ; 107(3): 030504, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838340

RESUMO

We explore the possibility of passive error correction in the toric code model. We first show that even coherent dynamics, stemming from spin interactions or the coupling to an external magnetic field, lead to logical errors. We then argue that Anderson localization of the defects, arising from unavoidable fluctuations of the coupling constants, provides a remedy. This protection is demonstrated by using general analytical arguments that are complemented with numerical results which show that self-correcting memory can in principle be achieved in the limit of a nonzero density of identical defects.

17.
Phys Rev Lett ; 106(3): 030401, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21405260

RESUMO

We study the thermodynamic properties of the 3D Hubbard model for temperatures down to the Néel temperature by using cluster dynamical mean-field theory. In particular, we calculate the energy, entropy, density, double occupancy, and nearest-neighbor spin correlations as a function of chemical potential, temperature, and repulsion strength. To make contact with cold-gas experiments, we also compute properties of the system subject to an external trap in the local density approximation. We find that an entropy per particle S/N ≈ 0.65(6) at U/t = 8 is sufficient to achieve a Néel state in the center of the trap, substantially higher than the entropy required in a homogeneous system. Precursors to antiferromagnetism can clearly be observed in nearest-neighbor spin correlators.

18.
Phys Rev Lett ; 106(5): 050402, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405378

RESUMO

We study the quench dynamics of a two-component ultracold Fermi gas from the weak into the strong interaction regime, where the short time dynamics are governed by the exponential growth rate of unstable collective modes. We obtain an effective interaction that takes into account both Pauli blocking and the energy dependence of the scattering amplitude near a Feshbach resonance. Using this interaction we analyze the competing instabilities towards Stoner ferromagnetism and pairing.

19.
J Phys Condens Matter ; 33(5)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33017805

RESUMO

We illustrate how the tensorial kernel support vector machine (TK-SVM) can probe the hidden multipolar orders and emergent local constraint in the classical kagome Heisenberg antiferromagnet. We show that TK-SVM learns the finite-temperature phase diagram in an unsupervised way. Moreover, in virtue of its strong interpretability, it identifies the tensorial quadrupolar and octupolar orders, which define a biaxialD3hspin nematic, and the local constraint that underlies the selection of coplanar states. We then discuss the disorder hierarchy of the phases, which can be inferred from both the analytical order parameters and an SVM bias parameter. For completeness we mention that the machine also picks up the leading3×3correlations in the dipolar channel at very low temperature, which are however weak compared to the quadrupolar and octupolar orders. Our work shows how TK-SVM can facilitate and speed up the analysis of classical frustrated magnets.

20.
Phys Rev E ; 104(1-2): 015311, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412223

RESUMO

An unconventional magnet may be mapped onto a simple ferromagnet by the existence of a high-symmetry point. Knowledge of conventional ferromagnetic systems may then be carried over to provide insight into more complex orders. Here we demonstrate how an unsupervised and interpretable machine-learning approach can be used to search for potential high-symmetry points in unconventional magnets without any prior knowledge of the system. The method is applied to the classical Heisenberg-Kitaev model on a honeycomb lattice, where our machine learns the transformations that manifest its hidden O(3) symmetry, without using data of these high-symmetry points. Moreover, we clarify that, in contrast to the stripy and zigzag orders, a set of D_{2} and D_{2h} ordering matrices provides a more complete description of the magnetization in the Heisenberg-Kitaev model. In addition, our machine also learns the local constraints at the phase boundaries, which manifest a subdimensional symmetry. This paper highlights the importance of explicit order parameters to many-body spin systems and the property of interpretability for the physical application of machine-learning techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA