Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 18: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713246

RESUMO

BACKGROUND: A growing field of evidence suggests the involvement of oncogenic receptor tyrosine kinases (RTKs) in cell transformation. Deregulated activity of RTKs in tumors can determine disease progression and therapeutic responses in several types of cancer, including neuroblastoma (NB). Therefore, RTKs targeting is a worthwhile challenge for the oncologists. Nevertheless, acquired resistance to RTK inhibitors (RTKi) remains a serious problem. Autophagy activation is among the possible obstacles for good efficacy of the therapy with RTKi. METHODS: Under different treatment conditions we measured autophagic flux using immunoblot and immunofluorescence assays. Death induction was validated by trypan blue exclusion assay and FACS analysis (calcein-AM/propidium iodide). The NB cell lines SH-SY5Y and Kelly were used for the in vitro study. RESULTS: In order to define whether autophagy might be a limiting factor for the efficacy of RTKi in NB cells, we firstly checked its activation following the treatment with several RTKi. Next, we investigated the possibility to increase their therapeutic efficiency by combining RTKi with autophagy blocking agents in vitro. We exploited the effectiveness of three RTKi either alone or in combination with autophagy inhibitors (Chloroquine-CQ and Spautin-1). We demonstrated that autophagy induction was drug-dependent, and that its inhibition increased the anti-tumor activity of a single RTKi unevenly. We observed that the combined use of blocking agents which impair late autophagy events, such as CQ, and RTKi can be more effective with respect to the use of RTKi alone. CONCLUSIONS: In the present report, we assessed the conditions under which autophagy is activated during the use of different RTKi currently in the pre-clinical evaluation for NB. We summarized the achievements of combined RTK/autophagy inhibitors treatment as a promising approach to enhance the efficacy of RTKi in impairing tumor cells viability.

2.
Cancers (Basel) ; 15(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37174079

RESUMO

Pancreatic cancer represents one of the most desmoplastic malignancies and is characterized by an extensive deposition of extracellular matrix. The latter is provided by activated cancer-associated fibroblasts (CAFs), which are abundant cells in the pancreatic tumor microenvironment. Many recent studies have made it clear that CAFs are not a singular cellular entity but represent a multitude of potentially dynamic subgroups that affect tumor biology at several levels. As mentioned before, CAFs significantly contribute to the fibrotic reaction and the biomechanical properties of the tumor, but they can also modulate the local immune environment and the response to targeted, chemo or radiotherapy. As the number of known and emerging CAF subgroups is steadily increasing, it is becoming increasingly difficult to keep up with these developments and to clearly discriminate the cellular subsets identified so far. This review aims to provide a helpful overview that enables readers to quickly familiarize themselves with field of CAF heterogeneity and to grasp the phenotypic, functional and therapeutic distinctions of the various stromal subpopulations.

3.
NAR Cancer ; 5(1): zcad007, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36755960

RESUMO

Transcriptional cancer subtypes which correlate with traits such as tumor growth, drug sensitivity or the chances of relapse and metastasis, have been described for several malignancies. The core regulatory circuits (CRCs) defining these subtypes are established by chromatin super enhancers (SEs) driving key transcription factors (TFs) specific for the particular cell state. In neuroblastoma (NB), one of the most frequent solid pediatric cancer entities, two major SE-directed molecular subtypes have been described: A more lineage-committed adrenergic (ADRN) and a mesenchymal (MES) subtype. Here, we found that a small isoxazole molecule (ISX), a frequently used pro-neural drug, reprogrammed SE activity and switched NB cells from an ADRN subtype towards a growth-retarded MES-like state. The MES-like state shared strong transcriptional overlap with ganglioneuroma (GN), a benign and highly differentiated tumor of the neural crest. Mechanistically, ISX suppressed chromatin binding of N-MYC, a CRC-amplifying transcription factor, resulting in loss of key ADRN subtype-enriched components such as N-MYC itself, PHOX2B and ALK, while concomitently, MES subtype markers were induced. Globally, ISX treatment installed a chromatin accessibility landscape typically associated with low risk NB. In summary, we provide evidence that CRCs and cancer subtype reprogramming might be amenable to future therapeutic targeting.

4.
Cells ; 11(11)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681458

RESUMO

Autophagy allows cells to temporarily tolerate energy stress by replenishing critical metabolites through self-digestion, thereby attenuating the cytotoxic effects of anticancer drugs that target tumor metabolism. Autophagy defects could therefore mark a metabolically vulnerable cancer state and open a therapeutic window. While mutations of autophagy genes (ATGs) are notably rare in cancer, haploinsufficiency network analyses across many cancers have shown that the autophagy pathway is frequently hit by somatic copy number losses of ATGs such as MAP1LC3B/ATG8F (LC3), BECN1/ATG6 (Beclin-1), and ATG10. Here, we used CRISPR/Cas9 technology to delete increasing numbers of copies of one or more of these ATGs in non-small cell lung cancer cells and examined the effects on sensitivity to compounds targeting aerobic glycolysis, a hallmark of cancer metabolism. Whereas the complete knockout of one ATG blocked autophagy and led to profound metabolic vulnerability, this was not the case for combinations of different nonhomozygous deletions. In cancer patients, the effect of ATG copy number loss was blunted at the protein level and did not lead to the accumulation of p62 as a sign of reduced autophagic flux. Thus, the autophagy pathway is shown to be markedly robust and resilient, even with the concomitant copy number loss of key autophagy genes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Autofagia/genética , Proteína Beclina-1/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Variações do Número de Cópias de DNA/genética , Humanos , Neoplasias Pulmonares/genética
5.
Nat Commun ; 11(1): 4684, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943635

RESUMO

Cancer cells have a characteristic metabolism, mostly caused by alterations in signal transduction networks rather than mutations in metabolic enzymes. For metabolic drugs to be cancer-selective, signaling alterations need to be identified that confer a druggable vulnerability. Here, we demonstrate that many tumor cells with an acquired cancer drug resistance exhibit increased sensitivity to mechanistically distinct inhibitors of cancer metabolism. We demonstrate that this metabolic vulnerability is driven by mTORC1, which promotes resistance to chemotherapy and targeted cancer drugs, but simultaneously suppresses autophagy. We show that autophagy is essential for tumor cells to cope with therapeutic perturbation of metabolism and that mTORC1-mediated suppression of autophagy is required and sufficient for generating a metabolic vulnerability leading to energy crisis and apoptosis. Our study links mTOR-induced cancer drug resistance to autophagy defects as a cause of a metabolic liability and opens a therapeutic window for the treatment of otherwise therapy-refractory tumor patients.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxiglucose , Tratamento Farmacológico , Feminino , Humanos , Neoplasias Pulmonares , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA