Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764281

RESUMO

Increased life expectancy in industrialized countries is causing an increased incidence of osteoporosis and the need for bioactive bone implants. The integration of implants can be improved physically, but mainly by chemical modifications of the material surface. It was recognized that amino-group-containing coatings improved cell attachment and intracellular signaling. The aim of this study was to determine the role of the amino group density in this positive cell behavior by developing controlled amino-rich nanolayers. This work used covalent grafting of polymer-based nanocoatings with different amino group densities. Titanium coated with the positively-charged trimethoxysilylpropyl modified poly(ethyleneimine) (Ti-TMS-PEI), which mostly improved cell area after 30 min, possessed the highest amino group density with an N/C of 32%. Interestingly, changes in adhesion-related genes on Ti-TMS-PEI could be seen after 4 h. The mRNA microarray data showed a premature transition of the MG-63 cells into the beginning differentiation phase after 24 h indicating Ti-TMS-PEI as a supportive factor for osseointegration. This amino-rich nanolayer also induced higher bovine serum albumin protein adsorption and caused the cells to migrate slower on the surface after a more extended period of cell settlement as an indication of a better surface anchorage. In conclusion, the cell spreading on amine-based nanocoatings correlated well with the amino group density (N/C).


Assuntos
Aminas , Osteoblastos , Adsorção , Diferenciação Celular , Países Desenvolvidos
2.
Macromol Rapid Commun ; 37(2): 155-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26502361

RESUMO

Initially developed as an elastomer with an excellent record of barrier and chemical resistance properties, poly(disulfide) has experienced a revival linked to the dynamic nature of the S-S covalent bond. A novel photobase-catalyzed oxidative polymerization of multifunctional thiols to poly(disulfide) network is reported. Based solely on air oxidation, the single-step process is triggered by the photodecarboxylation of a xanthone acetic acid liberating a strong bicyclic guanidine base. Starting with a 1 µm thick film based on trithiol poly(ethylene oxide) oligomer, the UV-mediated oxidation of thiols to disulfides occurs in a matter of minutes both selectively, i.e., without overoxidation, and quantitatively as assessed by a range of spectroscopic techniques. Thiolate formation and film thickness determine the reaction rates and yield. Spatial control of the photopolymerization serves to generate robust micropatterns, while the reductive cleavage of S-S bridges allows the recycling of 40% of the initial thiol groups.


Assuntos
Dissulfetos/química , Guanidinas/química , Polietilenoglicóis/química , Compostos de Sulfidrila/química , Xantonas/química , Catálise , Luz , Espectroscopia de Ressonância Magnética , Acoplamento Oxidativo , Processos Fotoquímicos , Polimerização
3.
Colloids Surf B Biointerfaces ; 241: 114039, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38879896

RESUMO

Thin films have been identified as an alternative approach for targeting sensitive site as drug delivery tool. In this work, the preparation of self-rolling thin films to form tubes for wound healing and easy placement (e.g. in the colon via colonoscopy) have been studied. We explored the use of thin films as a protective dressing combined to local release of an anti-inflammatory in order to improve drug efficacy and limit the side effects of the oral route. Non-cytotoxic poly(ethylene) glycol and poly(lactic acid) photo-crosslinkable star copolymers were used for rapid UV crosslinking of bilayered films loaded with prednisolone. The films, crosslinked under UV lamp without the need of photoinitiator, are optimized and compared in terms of water uptake, swelling ratio, final tube diameter and morphology, anti-inflammatory drug loading and release. Our studies showed the spontaneous rolling of bilayer constructs directly after immersion in water. Tubular geometry allows application of the patch through minimally invasive procedures such as colonoscopy. Moreover, the rolled-up bilayers highlighted efficient release of encapsulated drug following Fickian diffusion mechanism. We also confirmed the anti-inflammatory activity of the released anti-inflammatory drug that inhibits the pro-inflammatory cytokine IL-1ß in RAW 264.7 macrophages stimulated by Escherichia coli (E. coli).


Assuntos
Anti-Inflamatórios , Sistemas de Liberação de Medicamentos , Camundongos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Células RAW 264.7 , Prednisolona/química , Prednisolona/farmacologia , Prednisolona/administração & dosagem , Liberação Controlada de Fármacos , Poliésteres/química , Polietilenoglicóis/química , Escherichia coli/efeitos dos fármacos , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
4.
Sci Rep ; 14(1): 13271, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858407

RESUMO

Touch DNA, which can be found at crime scenes, consists of invisible biological traces deposited through a person's skin's contact with an object or another person. Many factors influence touch DNA transfer, including the "destination" substrate's surface. The latter's physicochemical characteristics (wettability, roughness, surface energy, etc.) will impact touch DNA deposition and persistence on a substrate. We selected a representative panel of substrates from objects found at crime scenes (glass, polystyrene, tiles, raw wood, etc.) to investigate the impact of these characteristics on touch DNA deposition and detection. These were shown to impact cell deposition, morphology, retention, and subsequent touch DNA genetic analysis. Interestingly, cell-derived fragments found within keratinocyte cells and fingermarks using in vitro touch DNA models could be successfully detected whichever the substrates' physicochemistry by targeting cellular proteins and carbohydrates for two months, indoors and outdoors. However, swabbing and genetic analyses of such mock traces from different substrates produced informative profiles mainly for substrates with the highest surface free energy and therefore the most hydrophilic. The substrates' intrinsic characteristics need to be considered to better understand both the transfer and persistence of biological traces, as well as their detection and collection, which require an appropriate methodology and sampling device to get informative genetic profiles.


Assuntos
DNA , Tato , Humanos , DNA/química , Propriedades de Superfície , Pele/metabolismo , Pele/química , Queratinócitos/metabolismo , Impressões Digitais de DNA/métodos
5.
Langmuir ; 29(47): 14536-44, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24171660

RESUMO

Simultaneous spraying of polyelectrolytes and small multicharged molecules of opposite charges onto a vertical substrate leads to continuous buildups of organic films. Here, we investigate the rules governing the buildup of two such systems: poly(allylamine hydrochloride)/sodium citrate (PAH/citrate) and PAH/sulfated α-cyclodextrin (PAH/CD-S). Special attention is paid to the film growth rate as a function of the spraying rate ratio of the two constituents. This parameter was varied by increasing the spraying rate of one of the constituents while maintaining constant that of the other. For PAH/CD-S systems, whatever the constituent (PAH or CD-S) whose spraying rate was kept fixed, the film growth rate first increases and passes through a maximum before decreasing when the spraying rate of the other constituent is increased. For PAH/citrate, the film growth rate reaches a plateau value when the spraying rate of citrate is increased while that of PAH is maintained constant, whereas when the spraying rate of citrate is maintained constant and that of PAH is increased, a behavior similar to that of PAH/CD-S is observed. The composition of PAH/CD-S sprayed films determined by X-ray photoelectron spectroscopy is independent of the spraying rate ratio of the two constituents and corresponds to one allylamine for one sulfate group. For PAH/citrate, by increasing the PAH/citrate spraying rate ratio, the carboxylic/nitrogen ratio in the film increases and tends to 1. There is thus always a deficit of carboxylic groups (COO(-) + COOH) with respect to amines (NH2 + NH3(+)). Yet, the ratio (COO(-)/NH3(+)) is always close to 1, ensuring exact charge compensation. The film morphology determined by atomic force microscopy is granular for PAH/CD-S and is smooth and liquid-like for PAH/citrate. A model based on strong (respectively weak) interactions between PAH and CD-S (respectively citrate) is proposed to explain these features.

6.
Anal Chem ; 84(5): 2147-53, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22242697

RESUMO

The analysis of the surface chemistry of carbon materials is of prime importance in numerous applications, but it is still a challenge to identify and quantify the surface functional groups which are present on a given carbon. Temperature programmed desorption with mass spectrometry analysis (TPD-MS) and X-ray photoelectron spectroscopy with an in situ heating device (TPD-XPS) were combined in order to improve the characterization of carbon surface chemistry. TPD-MS analysis allowed the quantitative analysis of the released gases as a function of temperature, while the use of a TPD device inside the XPS setup enabled the determination of the functional groups that remain on the surface at the same temperatures. TPD-MS results were then used to add constraints on the deconvolution of the O1s envelope of the XPS spectra. Furthermore, a better knowledge of the evolution of oxygen functional groups with temperature during a thermal treatment could be obtained. Hence, we show here that the combination of these two methods allows to increase the reliability of the analysis of the surface chemistry of carbon materials.

7.
ACS Appl Mater Interfaces ; 14(38): 43719-43731, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121931

RESUMO

In the biomedical field, self-rolling materials provide interesting opportunities to develop medical devices suitable for drug or cell encapsulation. However, to date, a major limitation for medical applications is the use of non-biodegradable and non-biocompatible polymers that are often reported for such applications or the slow actuation witnessed with degradable systems. In this work, biodegradable self-rolling tubes that exhibit a spontaneous and rapid actuation when immersed in water are designed. Photo-crosslinkable hydrophilic and hydrophobic poly(ethylene glycol)-poly(lactide) (PEG-PLA) star-shaped copolymers are prepared and used to prepare bilayered constructs. Thanks to the discrete mechanical and swelling properties of each layer and the cohesive/gradual nature of the interface, the resulting bilayered films are able to self-roll in water in less than 30 s depending on the nature of the hydrophilic layer and on the shape of the sample. The cytocompatibility and degradability of the materials are demonstrated and confirm the potential of such self-rolling resorbable biomaterials in the field of temporary medical devices.


Assuntos
Elastômeros , Hidrogéis , Implantes Absorvíveis , Materiais Biocompatíveis/química , Elastômeros/química , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Água/química
8.
Langmuir ; 27(6): 2819-25, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21332218

RESUMO

The deposition of "polydopamine" films, from an aqueous solution containing dopamine or other catecholamines, constitutes a new and versatile way to functionalize solid-liquid interfaces. Indeed such films can be deposited on almost all kinds of materials. Their deposition kinetics does not depend markedly on the surface chemistry of the substrate, and the films can reach thickness of a few tens of nanometers in a single reaction step. Up to now, even if a lot is known about the oxidation mechanism of dopamine in solution, only little information is available to describe the deposition mechanism on surfaces either by oxidation in solution or by electrodeposition. The deposition kinetics of melanin was only investigated from dopamine solutions using oxygen or ammonium persulfate as an oxidant and from a tris(hydroxymethyl) aminomethane (Tris) containing buffer solutions at pH 8.5. Many other oxidants could be used, and the buffer agent containing a primary amine group may influence the deposition process. Herein we show that the deposition kinetics of melanin from dopamine containing buffers at pH 8.5 can be markedly modified using Cu(2+) instead of O2 as an oxidant: the deposition kinetics remains linear up to thicknesses of more than 70 nm, whereas the film growth stops at 45 ± 5 nm in the presence of 02. In addition, the films prepared from Cu(2+) containing solutions display an absorption spectrum with defined peaks at 320 and 370 nm, which are absent in the spectra of films prepared in oxygenated solutions. The replacement of Tris buffer by phosphate buffer also has a marked effect on the melanin deposition kinetics.


Assuntos
Sulfato de Amônio/química , Dopamina/química , Melaninas/química , Oxidantes/química , Oxigênio/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Soluções
9.
Sci Rep ; 11(1): 12086, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103632

RESUMO

During the processing of biomolecules by ultrafiltration, the lysozyme enzyme undergoes conformational changes, which can affect its antibacterial activity. Operational conditions are considered to be one of the main parameters responsible for such changes, especially when using the same membrane and molecule. The present study demonstrates that, the same cut-off membrane (commercial data) can result in different properties of the protein after filtration, due to their different pore network. The filtration of lysozyme, regardless of the membrane, produces a decrease in the membrane hydraulic permeability (between 10 and 30%) and an increase in its selectivity in terms of observed rejection rate (30%). For the filtrated lysozyme, it appears that the HPLC retention time increases depending on the membrane used. The antibacterial activity of the filtrated samples is lower than the native protein and decreases with the increase of the applied pressure reaching 55-60% loss for 12 bar which has not been reported in the literature before. The observed results by SEC-HPLC and bacteriological tests, suggest that the conformation of the filtrated molecules are indeed modified. These results highlight the relationship between protein conformation or activity and the imposed shear stress.


Assuntos
Antibacterianos/química , Membranas Artificiais , Muramidase/química , Pressão , Ultrafiltração
10.
Nanomaterials (Basel) ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34443794

RESUMO

Functional coatings based on the assembly of submicrometric or nanoparticles are found in many applications in the biomedical field. However, these nanoparticle-based coatings are particularly fragile since they could be exposed to cells that are able to internalize nanoparticles. Here, we studied the efficiency of RAW 264.7 murine macrophages to internalize physisorbed silica nanoparticles as a function of time and particle size. This cell internalization efficiency was evaluated from the damages induced by the cells in the nanoparticle-based monolayer on the basis of scanning electron microscopy and confocal laser scanning microscopy observations. The internalization efficiency in terms of the percentage of nanoparticles cleared from the substrate is characterized by two size-dependent regimes. Additionally, we highlighted that a delay before internalization occurs, which increases with decreasing adsorbed nanoparticle size. This internalization is characterized by a minimal threshold that corresponds to 35 nm nanoparticles that are not internalized during the 12-h incubation considered in this work.

11.
Langmuir ; 26(4): 2816-24, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19950954

RESUMO

We report the covalent layer-by-layer construction of polyelectrolyte multilayer (PEM) films by using an efficient electrochemically triggered Sharpless click reaction. The click reaction is catalyzed by Cu(I) which is generated in situ from Cu(II) (originating from the dissolution of CuSO(4)) at the electrode constituting the substrate of the film. The film buildup can be controlled by the application of a mild potential inducing the reduction of Cu(II) to Cu(I) in the absence of any reducing agent or any ligand. The experiments were carried out in an electrochemical quartz crystal microbalance cell which allows both to apply a controlled potential on a gold electrode and to follow the mass deposited on the electrode through the quartz crystal microbalance. Poly(acrylic acid) (PAA) modified with either alkyne (PAA(Alk)) or azide (PAA(Az)) functions grafted onto the PAA backbone through ethylene glycol arms were used to build the PEM films. Construction takes place on gold electrodes whose potentials are more negative than a critical value, which lies between -70 and -150 mV vs Ag/AgCl (KCl sat.) reference electrode. The film thickness increment per bilayer appears independent of the applied voltage as long as it is more negative than the critical potential, but it depends upon Cu(II) and polyelectrolyte concentrations in solution and upon the reduction time of Cu(II) during each deposition step. An increase of any of these latter parameters leads to an increase of the mass deposited per layer. For given buildup conditions, the construction levels off after a given number of deposition steps which increases with the Cu(II) concentration and/or the Cu(II) reduction time. A model based on the diffusion of Cu(II) and Cu(I) ions through the film and the dynamics of the polyelectrolyte anchoring on the film, during the reduction period of Cu(II), is proposed to explain the major buildup features.


Assuntos
Membranas Artificiais , Polímeros/química , Catálise , Cobre/química , Eletroquímica , Eletrodos , Eletrólitos/química , Oxirredução
12.
Nanotechnology ; 21(6): 065303, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20057037

RESUMO

We developed specific negative tone resists suitable for preparing periodic inorganic nanostructures by ArF photolithography. This approach is based on the sol-gel chemistry of modified metal alkoxides followed by DUV laser irradiation. Patterning at the nanoscale was demonstrated by using an achromatic interferometer operating at 193 nm. In a second step, thermal treatment could be used to obtain metal oxide nanostructures (ZrO(2), TiO(2)). Such thermal treatment did not affect the integrity of the nanostructures. The DUV-induced modifications of the physico-chemical properties of the sol-gel thin film were followed by ellipsometry, XPS and AFM. The crystalline structure of the material after thermal treatment was proved by DRX analysis. Examples of periodic nanostructures are given in order to illustrate the possibilities opened by this new route that provides a convenient method to create transparent, robust, high refractive index nanostructures compatible with a wide variety of substrates.

13.
Plast Reconstr Surg ; 145(3): 542e-551e, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32097311

RESUMO

BACKGROUND: Texturing processes have been designed to improve biocompatibility and mechanical anchoring of breast implants. However, a high degree of texturing has been associated with severe abnormalities. In this study, the authors aimed to determine whether implant surface topography could also affect physiology of asymptomatic capsules. METHODS: The authors collected topographic measurements from 17 different breast implant devices by interferometry and radiographic microtomography. Morphologic structures were analyzed statistically to obtain a robust breast implant surface classification. The authors obtained three topographic categories of textured implants (i.e., "peak and valleys," "open cavities," and "semiopened cavities") based on the cross-sectional aspects. The authors simultaneously collected 31 Baker grade I capsules, sorted them according to the new classification, established their molecular profile, and examined the tissue organization. RESULTS: Each of the categories showed distinct expression patterns of genes associated with the extracellular matrix (Timp and Mmp members) and inflammatory response (Saa1, Tnsf11, and Il8), despite originating from healthy capsules. In addition, slight variations were observed in the organization of capsular tissues at the histologic level. CONCLUSIONS: The authors combined a novel surface implant classification system and gene profiling analysis to show that implant surface topography is a bioactive cue that can trigger gene expression changes in surrounding tissue, even in Baker grade I capsules. The authors' new classification system avoids confusion regarding the word "texture," and could be transposed to implant ranges of every manufacturer. This new classification could prove useful in studies on potential links between specific texturizations and the incidence of certain breast-implant associated complications.


Assuntos
Implante Mamário/efeitos adversos , Implantes de Mama/efeitos adversos , Mama/imunologia , Contratura Capsular em Implantes/imunologia , Complicações Pós-Operatórias/imunologia , Adulto , Idoso , Doenças Assintomáticas , Biomarcadores/análise , Mama/diagnóstico por imagem , Mama/cirurgia , Implante Mamário/instrumentação , Matriz Extracelular/imunologia , Estudos de Viabilidade , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Humanos , Contratura Capsular em Implantes/diagnóstico , Contratura Capsular em Implantes/epidemiologia , Contratura Capsular em Implantes/genética , Incidência , Interferometria , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/genética , Géis de Silicone , Propriedades de Superfície , Microtomografia por Raio-X
14.
Polymers (Basel) ; 12(8)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824776

RESUMO

Poly(lactic-co-glycolic acid) (PLGA) has been used in the field of tissue engineering as a scaffold due to its good biocompatibility, biodegradability and mechanical strength. With the aim to explore the degradability of PLGA electrospun nonwoven structures for oral mucosa tissue engineering applications, non-irradiated and gamma irradiated nonwovens were immersed in three different solutions, in which simulated body fluid (SBF) and artificial saliva are important for future oral mucosa tissue engineering. The nonwovens were immersed for 7, 15 and 30 days in SBF, culture media (DMEM) and artificial saliva at 37 °C. Before immersion in the solutions, the dosage of 15 kGy was applied for sterilization in one assay and compared with non-irradiated samples at the same timepoints. Samples were characterized using different techniques such as scanning electron microscopy (SEM), differential scanning calorimetric (DSC) and gel permeation chromatography (GPC) to evaluate the nonwoven degradation and Fourier-transform infrared spectroscopy (FTIR) to evaluate the chain scissions. Our results showed that PLGA nonwovens were constituted by semicrystalline fibers with moderate degradation properties up to thirty days. The non-irradiated samples exhibited slower kinetics of degradation than irradiated nonwovens. For immersion times longer than 7 days in the three different solutions, the mean diameter of irradiated fibers stayed in the same range, but significantly different from the control sample. On non-irradiated samples, the degradation kinetics was slower and the plateau in the diameter value was only attained after 30 days of immersion in the fluids. Plasticization (fluid absorption into the fiber structure) occurred in the bulk material, as confirmed by a decrease in Tg observed by DSC analyses of non-irradiated and irradiated nonwovens, in comparison with the respective controls. In addition, artificial saliva showed a higher capacity of influencing PLGA crystallization than SBF and DMEM. FTIR analyses showed typical PLGA chemical functional groups changes. These results will be important for future application of those PLGA electrospun nonwovens for oral mucosa regeneration.

15.
Biointerphases ; 13(6): 06D408, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30599510

RESUMO

Understanding how topographical cues can control cell behavior is a major fundamental question which is of particular interest for implant design. Recent findings show that cell-scale curvature, as well as nanoscale topography, can affect different aspects of cell migration. However, the correlation between specific curvature radii and cell behavior, as well as the combinatorial effect of nanoscale topography and cell-scale curvature, has not yet been investigated. Herein, the authors employ a new femtosecond laser ablation method to generate multiscale topographical patterns directly on titanium surfaces. The process allows us to produce microgrooves of specific curvature imprinted with oriented nanotopographical features called Laser-Induced Periodic Surface Structures (LIPSS). The authors show that curved grooves stimulate the stem cell migration speed in comparison to flat or linear grooves. The fastest velocities are observed on 75 µm curvature radius, whereas cells migrating on 125 µm curvatures exhibit a lower speed similar to the ones migrating on straight lines. Double replicas of these grooves allow us to mask the LIPSS while keeping identical the cell-scale pattern, therefore permitting to uncouple the effect of nanoscale and microscale topographies. The authors found that the presence of nanoscale topographies improves the reading of microgrooves curvature by cells. Altogether, this work shows that the combination of specific curvatures together with nanopatterning can control the velocity of migrating stem cells and promote the use of femtosecond laser ablation in the context of surface implant design.


Assuntos
Movimento Celular , Células-Tronco Mesenquimais/fisiologia , Propriedades de Superfície , Alicerces Teciduais , Animais , Linhagem Celular , Camundongos , Titânio
16.
Sci Rep ; 8(1): 10444, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992969

RESUMO

Deep-UV (DUV) laser patterning has been widely used in recent years for micro- and nanopatterning, taking advantage of the specific properties of irradiation with high-energy photons. In this paper, we show the usefulness of DUV laser patterning for preparing surfaces with controlled chemical properties at the micro- and nanoscale. Our motivation was to develop a simple and versatile method for chemical patterning at multiscales (from mm to nm) over relatively wide areas (mm2 to cm2). The chemical properties were provided by self-assembled monolayers (SAMs), prepared on glass or silicon wafers. We first investigated their modification under our irradiation conditions (ArF laser) using AFM, XPS and contact angle measurements. Photopatterning was then demonstrated with minimum feature sizes as small as 75 nm, and we showed the possibility to regraft a second SAM on the irradiated regions. Finally, we used these chemically patterned surfaces for directed self-assembly of several types of objects, such as block copolymers, sol-gel materials and liquids by vapor condensation.

17.
Nat Commun ; 9(1): 3995, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266986

RESUMO

Cells have evolved multiple mechanisms to apprehend and adapt finely to their environment. Here we report a new cellular ability, which we term "curvotaxis" that enables the cells to respond to cell-scale curvature variations, a ubiquitous trait of cellular biotopes. We develop ultra-smooth sinusoidal surfaces presenting modulations of curvature in all directions, and monitor cell behavior on these topographic landscapes. We show that adherent cells avoid convex regions during their migration and position themselves in concave valleys. Live imaging combined with functional analysis shows that curvotaxis relies on a dynamic interplay between the nucleus and the cytoskeleton-the nucleus acting as a mechanical sensor that leads the migrating cell toward concave curvatures. Further analyses show that substratum curvature affects focal adhesions organization and dynamics, nuclear shape, and gene expression. Altogether, this work identifies curvotaxis as a new cellular guiding mechanism and promotes cell-scale curvature as an essential physical cue.


Assuntos
Movimento Celular/fisiologia , Núcleo Celular/fisiologia , Forma Celular/fisiologia , Citoesqueleto/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Forma Celular/genética , Expressão Gênica , Humanos , Camundongos , Microscopia Confocal , Modelos Biológicos , Propriedades de Superfície , Imagem com Lapso de Tempo/métodos
18.
Acta Biomater ; 55: 481-492, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28434979

RESUMO

Design of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopaedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6>BMP-2>BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization. STATEMENT OF SIGNIFICANCE: The originality of our paper relies on the first direct comparison of the in vitro osteogenic potential of three osteogenic BMPs (BMP-2, -6 and -7) combined with native human plasma fibronectin delivered in solution or coated by laser transfer onto titanium hydroxyapatite surfaces. We confirm that BMP association with fibronectin enhances the osteogenic activity of BMP-2, -6 and -7, but with essential discrepancies, depending on the BMP member, and in agreement with the affinity of BMPs for fibronectin. Moreover, we bring elements to explain the origin of the BMP-2 medical life-threatening side-effects by analyzing in vitro paracrine effects. Finally, this work supports the alternative use of FN/BMP-6 to induce osteogenic activity under physiological conditions, with minimum side effects.


Assuntos
Materiais Biomiméticos , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 6 , Proteína Morfogenética Óssea 7 , Materiais Revestidos Biocompatíveis , Durapatita , Fibronectinas , Osteoblastos/metabolismo , Titânio , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 6/química , Proteína Morfogenética Óssea 6/farmacologia , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/farmacologia , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Fibronectinas/química , Fibronectinas/farmacologia , Humanos , Camundongos , Osteoblastos/citologia , Titânio/química , Titânio/farmacologia
20.
Int J Pharm ; 497(1-2): 54-61, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26621686

RESUMO

The purpose of this study is to evaluate the potential of simple high performance liquid chromatography (HPLC) setup for quantification of adsorbed proteins on various type of plane substrates with limited area (<3 cm(2)). Protein quantification was investigated with a liquid chromatography chain equipped with a size exclusion column or a reversed-phase column. By evaluating the validation of the method according to guidelines of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), all the results obtained by HPLC were reliable. By simple adsorption test at the contact of hydrophilic (glass) and hydrophobic (polydimethylsiloxane: PDMS) surfaces, kinetics of adsorption were determined and amounts of adsorbed bovine serum albumin, myoglobin and lysozyme were obtained: as expected for each protein, the amount adsorbed at the plateau on glass (between 0.15 µg/cm(2) and 0.4 µg/cm(2)) is lower than for hydrophobic PDMS surfaces (between 0.45 µg/cm(2) and 0.8 µg/cm(2)). These results were consistent with bicinchoninic acid protein determination. According to ICH guidelines, both Reversed Phase and Size Exclusion HPLC can be validated for quantification of adsorbed protein. However, we consider the size exclusion approach more interesting in this field because additional informations can be obtained for aggregative proteins. Indeed, monomer, dimer and oligomer of bovine serum albumin (BSA) were observed in the chromatogram. On increasing the temperature, we found a decrease of peak intensity of bovine serum albumin as well as the fraction of dimer and oligomer after contact with PDMS and glass surface. As the surface can act as a denaturation parameter, these informations can have a huge impact on the elucidation of the interfacial behavior of protein and in particular for aggregation processes in pharmaceutical applications.


Assuntos
Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Dimetilpolisiloxanos/química , Vidro/química , Interações Hidrofóbicas e Hidrofílicas , Muramidase/química , Mioglobina/química , Soroalbumina Bovina/química , Animais , Bovinos , Galinhas , Cromatografia de Fase Reversa , Confiabilidade dos Dados , Cavalos , Cinética , Limite de Detecção , Estrutura Quaternária de Proteína , Quinolinas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA