Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immunity ; 55(4): 701-717.e7, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35364006

RESUMO

Bacterial sensing by intestinal tumor cells contributes to tumor growth through cell-intrinsic activation of the calcineurin-NFAT axis, but the role of this pathway in other intestinal cells remains unclear. Here, we found that myeloid-specific deletion of calcineurin in mice activated protective CD8+ T cell responses and inhibited colorectal cancer (CRC) growth. Microbial sensing by myeloid cells promoted calcineurin- and NFAT-dependent interleukin 6 (IL-6) release, expression of the co-inhibitory molecules B7H3 and B7H4 by tumor cells, and inhibition of CD8+ T cell-dependent anti-tumor immunity. Accordingly, targeting members of this pathway activated protective CD8+ T cell responses and inhibited primary and metastatic CRC growth. B7H3 and B7H4 were expressed by the majority of human primary CRCs and metastases, which was associated with low numbers of tumor-infiltrating CD8+ T cells and poor survival. Therefore, a microbiota-, calcineurin-, and B7H3/B7H4-dependent pathway controls anti-tumor immunity, revealing additional targets for immune checkpoint inhibition in microsatellite-stable CRC.


Assuntos
Neoplasias Colorretais , Microbiota , Animais , Antígenos B7 , Linfócitos T CD8-Positivos , Calcineurina/metabolismo , Neoplasias Colorretais/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set
2.
ISME J ; 14(2): 649-656, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31680119

RESUMO

Deep-sea Bathymodiolus mussels and their chemoautotrophic symbionts are well-studied representatives of mutualistic host-microbe associations. However, how host-symbiont interactions vary on the molecular level between related host and symbiont species remains unclear. Therefore, we compared the host and symbiont metaproteomes of Pacific B. thermophilus, hosting a thiotrophic symbiont, and Atlantic B. azoricus, containing two symbionts, a thiotroph and a methanotroph. We identified common strategies of metabolic support between hosts and symbionts, such as the oxidation of sulfide by the host, which provides a thiosulfate reservoir for the thiotrophic symbionts, and a cycling mechanism that could supply the host with symbiont-derived amino acids. However, expression levels of these processes differed substantially between both symbioses. Backed up by genomic comparisons, our results furthermore revealed an exceptionally large repertoire of attachment-related proteins in the B. thermophilus symbiont. These findings imply that host-microbe interactions can be quite variable, even between closely related systems.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Mytilidae/microbiologia , Simbiose/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Anidrases Carbônicas/metabolismo , Crescimento Quimioautotrófico , Genoma Bacteriano/genética , Brânquias/metabolismo , Interações entre Hospedeiro e Microrganismos , Mytilidae/metabolismo , Proteômica , Simbiose/fisiologia
3.
Nat Med ; 25(4): 679-689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936547

RESUMO

Association studies have linked microbiome alterations with many human diseases. However, they have not always reported consistent results, thereby necessitating cross-study comparisons. Here, a meta-analysis of eight geographically and technically diverse fecal shotgun metagenomic studies of colorectal cancer (CRC, n = 768), which was controlled for several confounders, identified a core set of 29 species significantly enriched in CRC metagenomes (false discovery rate (FDR) < 1 × 10-5). CRC signatures derived from single studies maintained their accuracy in other studies. By training on multiple studies, we improved detection accuracy and disease specificity for CRC. Functional analysis of CRC metagenomes revealed enriched protein and mucin catabolism genes and depleted carbohydrate degradation genes. Moreover, we inferred elevated production of secondary bile acids from CRC metagenomes, suggesting a metabolic link between cancer-associated gut microbes and a fat- and meat-rich diet. Through extensive validations, this meta-analysis firmly establishes globally generalizable, predictive taxonomic and functional microbiome CRC signatures as a basis for future diagnostics.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma , Adenoma/genética , Adenoma/microbiologia , Idoso , Biomarcadores Tumorais/metabolismo , Estudos de Coortes , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Reprodutibilidade dos Testes , Especificidade da Espécie
4.
Stand Genomic Sci ; 12: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878861

RESUMO

Bathymodiolus thermophilus, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic Gammaproteobacteria within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur compounds emanating from the vents as energy source. As the symbiont is uncultured, comprehensive and detailed insights into its metabolism and its interactions with the host can only be obtained from culture-independent approaches such as genomics and proteomics. In this study, we report the first draft genome sequence of the sulfur-oxidizing symbiont of B. thermophilus, here tentatively named Candidatus Thioglobus thermophilus. The draft genome (3.1 Mb) harbors 3045 protein-coding genes. It revealed pathways for the use of sulfide and thiosulfate as energy sources and encodes the Calvin-Benson-Bassham cycle for CO2 fixation. Enzymes required for the synthesis of the tricarboxylic acid cycle intermediates oxaloacetate and succinate were absent, suggesting that these intermediates may be substituted by metabolites from external sources. We also detected a repertoire of genes associated with cell surface adhesion, bacteriotoxicity and phage immunity, which may perform symbiosis-specific roles in the B. thermophilus symbiosis.

5.
ISME J ; 11(2): 463-477, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27801908

RESUMO

The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners. Our study revealed that key metabolic functions are most likely accomplished jointly by B. azoricus and its symbionts: (1) CO2 is pre-concentrated by the host for carbon fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing symbiont. In return (3), the sulfur oxidizer may compensate for the host's putative deficiency in amino acid and cofactor biosynthesis. We also identified numerous 'symbiosis-specific' host proteins by comparing symbiont-containing and symbiont-free host tissues and symbiont fractions. These proteins included a large complement of host digestive enzymes in the gill that are likely involved in symbiont digestion and carbon transfer from the symbionts to the host.


Assuntos
Gammaproteobacteria/fisiologia , Mytilidae/microbiologia , Proteoma , Simbiose , Animais , Vias Biossintéticas , Brânquias/microbiologia , Fontes Hidrotermais , Metano/metabolismo , Mytilidae/genética , Oxirredução , Especificidade da Espécie , Enxofre/metabolismo
6.
Nat Microbiol ; 2: 16193, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775698

RESUMO

The shallow water bivalve Codakia orbicularis lives in symbiotic association with a sulfur-oxidizing bacterium in its gills. The endosymbiont fixes CO2 and thus generates organic carbon compounds, which support the host's growth. To investigate the uncultured symbiont's metabolism and symbiont-host interactions in detail we conducted a proteogenomic analysis of purified bacteria. Unexpectedly, our results reveal a hitherto completely unrecognized feature of the C. orbicularis symbiont's physiology: the symbiont's genome encodes all proteins necessary for biological nitrogen fixation (diazotrophy). Expression of the respective genes under standard ambient conditions was confirmed by proteomics. Nitrogenase activity in the symbiont was also verified by enzyme activity assays. Phylogenetic analysis of the bacterial nitrogenase reductase NifH revealed the symbiont's close relationship to free-living nitrogen-fixing Proteobacteria from the seagrass sediment. The C. orbicularis symbiont, here tentatively named 'Candidatus Thiodiazotropha endolucinida', may thus not only sustain the bivalve's carbon demands. C. orbicularis may also benefit from a steady supply of fixed nitrogen from its symbiont-a scenario that is unprecedented in comparable chemoautotrophic symbioses.


Assuntos
Bivalves/microbiologia , Crescimento Quimioautotrófico , Gammaproteobacteria/fisiologia , Fixação de Nitrogênio , Simbiose , Animais , Gammaproteobacteria/química , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Brânquias/microbiologia , Redes e Vias Metabólicas/genética , Nitrogenase/metabolismo , Oxirredutases/genética , Filogenia , Proteoma/análise , Análise de Sequência de DNA
7.
Elife ; 4: e07966, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371554

RESUMO

Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.


Assuntos
Organismos Aquáticos/microbiologia , Bactérias/genética , Toxinas Bacterianas/genética , Bivalves/microbiologia , Fontes Hidrotermais , Animais , Bactérias/crescimento & desenvolvimento , Toxinas Bacterianas/biossíntese , DNA Bacteriano/química , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Genoma Bacteriano , Dados de Sequência Molecular , Proteoma/análise , Água do Mar , Análise de Sequência de DNA , Simbiose
8.
J Proteomics ; 75(3): 1004-17, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22079245

RESUMO

Cyclosporine A, a potent immunosuppressive agent extensively used to prevent allograft rejections, is under scrutiny due to severe toxic effects. CsA therapy is often continued during pregnancy in conditions such as organ transplantations and autoimmune diseases. Herein, we investigated the effects of CsA on early morphogenesis of zebrafish and identified a spectrum of proteins whose expression was altered in the drug treated embryos. Time-lapse fluorescence imaging of germ-line double transgenic zebrafish embryos treated with CsA revealed severe blood regurgitation in heart chambers, absence of blood circulation in vessels, pericardial and yolk sac edema. We also observed lack of mature blood vessels and down-regulation of endothelial markers in CsA treated embryos. Proteomic analysis using 2D-DIGE followed by mass-spectrometry led to the identification of 37 proteins whose expression was significantly modulated in presence of the drug. These proteins were mostly associated with cytoskeletal/structural assembly, lipid-binding, stress response and metabolism. Furthermore, mRNA expression analysis of eight proteins and Western blotting of actin revealed consistency between the changes observed in protein expression and its corresponding mRNA levels. Our findings demonstrate that CsA administration during early morphogenesis in zebrafish modulates the expression of some proteins which are known to be involved in important physiological processes.


Assuntos
Ciclosporina/efeitos adversos , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Imunossupressores/efeitos adversos , Morfogênese/efeitos dos fármacos , Proteoma/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Anormalidades Múltiplas/induzido quimicamente , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/metabolismo , Animais , Ciclosporina/farmacologia , Embrião não Mamífero/metabolismo , Feminino , Humanos , Imunossupressores/farmacologia , Gravidez , Proteômica/métodos , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA