Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nano Lett ; 23(13): 5919-5926, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390368

RESUMO

Exerting forces on biomolecules inside living cells would allow us to probe their dynamic interactions in their native environment. Magnetic iron oxide nanoparticles represent a unique tool capable of pulling on biomolecules with the application of an external magnetic field gradient; however, their use has been restricted to biomolecules accessible from the extracellular medium. Targeting intracellular biomolecules represents an additional challenge due to potential nonspecific interactions with cytoplasmic or nuclear components. We present the synthesis of sulfobetaine-phosphonate block copolymer ligands, which provide magnetic nanoparticles that are stealthy and targetable in living cells. We demonstrate, for the first time, their efficient targeting in the nucleus and their use for magnetic micromanipulation of a specific genomic locus in living cells. We believe that these stable and sensitive magnetic nanoprobes represent a promising tool to manipulate specific biomolecules in living cells and probe the mechanical properties of living matter at the molecular scale.


Assuntos
Nanopartículas , Polímeros , Micromanipulação , Genômica , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos
2.
Langmuir ; 38(34): 10512-10519, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35979644

RESUMO

Dynamics with an orientational degree of freedom are fundamental in biological events. Probes with polarized luminescence enable a determination of the orientation. Lanthanide-doped nanocrystals can provide more precise analysis than quantum dots due to the nonphotoblinking/bleaching nature and the multiple line-shaped emission. However, the intrinsic polarization property of the original nanocrystals often deteriorates in complex physiological environments because the colloidal stability easily breaks and the probes aggregate in the media with abundant salts and macromolecules. Engineering the surface chemistry of the probes is thus essential to be compatible with biosystems, which has remained a challenging task that should be exclusively addressed for each specific probe. Here, we demonstrate a facile and efficient surface functionalization of lanthanide-doped nanorods by zwitterionic block copolymers. Due to the steric interaction and the intrinsic zwitterionic nature of the polymers, high colloidal stability of the zwitterionic nanorod suspension is achieved over wide ranges of pH and concentration of salts, even giving rise to the lyotropic liquid crystalline behavior of the nanorods in physiological media. The shear-aligned ability is shown to be unaltered by the coated polymers, and thus, the strongly polarized emission of Eu3+ is preserved. Besides, biological experiments reveal good biocompatibility of the zwitterionic nanorods with negligible nonspecific binding. This study is a stepping stone for the use of the nanorods as orientation probes in biofluids and validates the strategy of coupling zwitterions to lanthanide-doped nanocrystals for various bioapplications.


Assuntos
Técnicas Biossensoriais , Elementos da Série dos Lantanídeos , Pontos Quânticos , Elementos da Série dos Lantanídeos/química , Polímeros , Pontos Quânticos/química , Sais
3.
J Am Chem Soc ; 143(4): 1863-1872, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33471504

RESUMO

Two-dimensional II-VI semiconductor nanoplatelets (NPLs) present exceptionally narrow optical features due to their thickness defined at the atomic scale. Because thickness drives the band-edge energy, its control is of paramount importance. Here, we demonstrate that native carboxylate ligands can be replaced by halides that partially dissolve cadmium chalcogenide NPLs at the edges. The released monomers then recrystallize on the wide top and bottom facets, leading to an increase in NPL thickness. This dissolution/recrystallization method is used to increase NPL thickness to 9 ML while using 3 ML NPLs as the starting material. We also demonstrate that this method is not limited to CdSe and can be extended to CdS and CdTe to grow thick NPLs. When the metal halide precursor is introduced with a chalcogenide precursor on the NPLs, CdSe/CdSe, CdTe/CdTe, and CdSe/CdTe core/shell homo- and heterostructures are achieved. Finally, when an incomplete layer is grown, NPLs with steps are synthesized. These stress-free homostructures are comparable to type I heterostructures, leading to recombination of the exciton in the thicker area of the NPLs. Following the growth of core/crown and core/shell NPLs, it affords a new degree of freedom for the growth of structured NPLs with designed band engineering, which has so far been only achievable for heteromaterial nanostructures.

4.
Small ; 15(47): e1902796, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31583817

RESUMO

Single-particle tracking with quantum dots (QDs) constitutes a powerful tool to track the nanoscopic dynamics of individual cell membrane components unveiling their membrane diffusion characteristics. Here, the nano-resolved population dynamics of QDs is exploited to reconstruct the topography and structural changes of the cell membrane surface with high temporal and spatial resolution. For this proof-of-concept study, bright, small, and stable biofunctional QD nanoconstructs are utilized recognizing the endogenous neuronal cannabinoid receptor 1, a highly expressed and fast-diffusing membrane protein, together with a commercial point-localization microscope. Rapid QD diffusion on the axonal plasma membrane of cultured hippocampal neurons allows precise reconstruction of the membrane surface in less than 1 min with a spatial resolution of tens of nanometers. Access of the QD nanoconstructs to the synaptic cleft enables rapid 3D topological reconstruction of the entire presynaptic component. Successful reconstruction of membrane nano-topology and deformation at the second time-scale is also demonstrated for HEK293 cell filopodia and axons. Named "nanoPaint," this super-resolution imaging technique amenable to any endogenous transmembrane target represents a versatile platform to rapidly and accurately reconstruct the cell membrane nano-topography, thereby enabling the study of the rapid dynamic phenomena involved in neuronal membrane plasticity.


Assuntos
Membrana Celular/química , Imageamento Tridimensional , Nanopartículas/química , Nanotecnologia/métodos , Animais , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Pontos Quânticos
5.
Chem Rev ; 117(2): 536-711, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27359326

RESUMO

Luminescent semiconductor quantum dots (QDs) are one of the more popular nanomaterials currently utilized within biological applications. However, what is not widely appreciated is their growing role as versatile energy transfer (ET) donors and acceptors within a similar biological context. The progress made on integrating QDs and ET in biological configurations and applications is reviewed in detail here. The goal is to provide the reader with (1) an appreciation for what QDs are capable of in this context, (2) how this field has grown over a relatively short time span, and, in particular, (3) how QDs are steadily revolutionizing the development of new biosensors along with a myriad of other photonically active nanomaterial-based bioconjugates. An initial discussion of QD materials along with key concepts surrounding their preparation and bioconjugation is provided given the defining role these aspects play in the QDs ability to succeed in subsequent ET applications. The discussion is then divided around the specific roles that QDs provide as either Förster resonance energy transfer (FRET) or charge/electron transfer donor and/or acceptor. For each QD-ET mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining their biosensing and related ET utility. Other configurations such as incorporation of QDs into multistep ET processes or use of initial chemical and bioluminescent excitation are treated similarly. ET processes that are still not fully understood such as QD interactions with gold and other metal nanoparticles along with carbon allotropes are also covered. Given their maturity, some specific applications ranging from in vitro sensing assays to cellular imaging are separated and discussed in more detail. Finally a perspective on how this field will continue to evolve is provided.


Assuntos
Técnicas Biossensoriais , Transferência de Energia , Pontos Quânticos , Semicondutores , Ligantes , Propriedades de Superfície
6.
Bioconjug Chem ; 26(8): 1582-9, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25992903

RESUMO

A novel method for covalent conjugation of DNA to polymer coated quantum dots (QDs) is investigated in detail. This method is fast and efficient: up to 12 DNA strands can be covalently conjugated per QD in optimized reaction conditions. The QD-DNA conjugates can be purified using size exclusion chromatography and the QDs retain high quantum yield and excellent stability after DNA coupling. We explored single-stranded and double-stranded DNA coupling, as well as various lengths. We show that the DNA coupling is most efficient for short (15 mer) single-stranded DNA. The DNA coupling has been performed on QDs emitting at four different wavelengths, as well as on gold nanoparticles, suggesting that this technique can be generalized to a wide range of nanoparticles.


Assuntos
Coloides/química , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Pontos Quânticos
7.
Nano Lett ; 13(11): 5075-8, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24111602

RESUMO

The interaction of ligands with the surface of quantum dots (QD) was studied using tritiated oleic acid as an ultrasensitive reporter. The use of labeled oleic acid not only permitted to quantify the number of ligands attached to the surface of QDs of various sizes but also enabled the investigation of the relative affinity of different ligand types for the nanocrystal's surface.

8.
ACS Appl Mater Interfaces ; 15(43): 49943-49952, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856842

RESUMO

Gold nanoparticles, such as nanorods (AuNRs), present exceptionally high absorption cross sections that can be tuned to the near-infrared (NIR), the optimal window for light penetration in biological tissues. This makes them valuable photosensitizers for the treatment of cancer using photothermal therapy, where absorbed light energy is converted into heat. In addition, there is a strong interest in using hot electron carriers generated in AuNRs by NIR irradiation to produce cytotoxic radical oxygen species in order to enhance the efficiency of the phototherapy. Here, we show that hybrid nanoparticles composed of AuNRs with TiO2 deposited at their extremities are efficient sensitizers to produce hydroxyl radical species under NIR irradiation. We attribute this phenomenon to the transfer of hot electrons generated from the plasmon excitation in AuNR to the TiO2 tips, followed by reduction of dioxygen. We then functionalize these hybrid AuNR/TiO2 nanoparticles with block poly(ethylene glycol)-phosphonate polymer ligands to stabilize them in a physiological medium. We finally demonstrate that the photodynamic effect induces cell death upon irradiation with a greater efficiency than the photothermal effect alone.


Assuntos
Nanopartículas Metálicas , Nanotubos , Fotoquimioterapia , Radical Hidroxila , Ouro/farmacologia , Fototerapia , Oxigênio , Linhagem Celular Tumoral
9.
Small ; 8(7): 1029-37, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22378567

RESUMO

The in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been explored, but they have not yet been compared systematically with respect to the QD intracellular stability. In this work, the intracellular aggregation kinetics of QDs for three different surface chemistries based on ligand exchange or encapsulation with amphiphilic polymers are compared. For each surface chemistry, three delivery methods for bringing the nanoparticles into the cells are compared: electroporation, microinjection, and pinocytosis. It is concluded that the QD intracellular aggregation behavior is strongly dependent on the surface chemistry. QDs coated with dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands diffuse freely in cells for longer periods of time than for QDs in the other chemistries tested, and they can access all cytoplasmic compartments. Even when conjugated to streptavidin, these DHLA-SB QDs remain freely diffusing inside the cytoplasm and unaggregated, and they are able to reach a biotinylated target inside HeLa cells. Such labeling was more efficient when compared to commercial streptavidin-conjugated QDs, which may be due to the smaller size of DHLA-SB QDs and/or to their superior intracellular stability.


Assuntos
Betaína/análogos & derivados , Pontos Quânticos , Ácido Tióctico/análogos & derivados , Animais , Betaína/química , Citoplasma/metabolismo , Eletroporação , Embrião não Mamífero/metabolismo , Células HeLa , Humanos , Microinjeções , Ácido Tióctico/química , Xenopus laevis
10.
Langmuir ; 28(43): 15177-84, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23006042

RESUMO

High colloidal stability in aqueous conditions is a prerequisite for fluorescent nanocrystals, otherwise known as "quantum dots", intended to be used in any long-term bioimaging experiment. This essential property implies a strong affinity between the nanoparticles themselves and the ligands they are coated with. To further improve the properties of the bidentate monozwitterionic ligand previously developed in our team, we synthesized a multidentate polyzwitterionic ligand, issued from the copolymerization of a bidentate monomer and a monozwitterionic one. The nanocrystals passivated by this polymeric ligand showed an exceptional colloidal stability, regardless of the medium conditions (pH, salinity, dilution, and biological environment), and we demonstrated the affinity of the polymer exceeded by 3 orders of magnitude that of the bidentate ligand (desorption rates assessed by a competition experiment). The synthesis of the multidentate polyzwitterionic ligand proved also to be easily tunable and allowed facile functionalization of the corresponding quantum dots, which led to successful specific biomolecules targeting.

11.
Cancers (Basel) ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626059

RESUMO

Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.

12.
Pharmaceutics ; 14(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36297571

RESUMO

Quantum Dots (QDs) are fluorescent nanoparticles known for their exceptional optical properties, i.e., high fluorescence emission, photostability, narrow emission spectrum, and broad excitation wavelength. These properties make QDs an exciting choice for bioimaging applications, notably in cancer imaging. Challenges lie in their ability to specifically label targeted cells. Numerous studies have been carried out with QDs coupled to various ligands like peptides, antibodies, aptamers, etc., to achieve efficient targeting. Most studies were conducted in vitro with two-dimensional cell monolayers (n = 8902) before evolving towards more sophisticated models. Three-dimensional multicellular tumor models better recapitulate in vivo conditions by mimicking cell-to-cell and cell-matrix interactions. To date, only few studies (n = 34) were conducted in 3D in vitro models such as spheroids, whereas these models could better represent QDs behavior in tumors compared to monolayers. Thus, the purpose of this review is to present a state of the art on the studies conducted with Quantum Dots on spheroid models for imaging and phototherapy purposes.

13.
Small ; 7(14): 2101-8, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21710484

RESUMO

In this report the correlation between the solution photoluminescence (PL) quantum yield and the fluorescence emission of individual semiconductor quantum dots (QDs) is investigated. This is done by taking advantage of previously reported enhancement in the macroscopic quantum yield of water-soluble QDs capped with dihydrolipoic acid (DHLA) when self-assembled with polyhistidine-appended proteins, and by using fluorescence coincidence analysis (FCA) to detect the presence of "bright" and "dark" single QDs in solution. This allows for changes in the fraction of the two QD species to be tracked as the PL yield of the solution is progressively altered. The results clearly indicate that in a dispersion of luminescent nanocrystals, "bright" (intermittently emitting) single QDs coexist with "permanently dark" (non-emitting) QDs. Furthermore, the increase in the fraction of emitting QDs accompanies the increase in the PL quantum yield of the solution. These findings support the idea that a dispersion of QDs consists of two optically distinct populations of nanocrystals--one is "bright" while the other is "dark;" and that the relative fraction of these two populations defines the overall PL yield.


Assuntos
Escuridão , Medições Luminescentes/métodos , Pontos Quânticos , Compostos de Cádmio/química , Fluoresceína-5-Isotiocianato , Fluorescência , Proteínas Ligantes de Maltose/metabolismo , Peptídeos/metabolismo , Compostos de Selênio/química , Estreptavidina/metabolismo , Sulfetos/química , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Compostos de Zinco/química
14.
ACS Nano ; 15(1): 1445-1453, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33378154

RESUMO

Whispering gallery mode (WGM) microcavities are emerging as potential candidates in the field of biosensing applications, as their resonance wavelengths shift with changes in the refractive index in the region of their evanescent field. Their high-quality resonance modes and accessible surface functionalities make them promising for molecular assays, but their high sensitivity makes them inherently unstable. Here, we demonstrate that WGM resonances also strongly enhance fluorescence energy transfer between donors placed inside the microcavity and acceptors placed outside. We load colloidal quantum dots (QDs) into polymeric microspheres to provide WGMs that benefit from the QD optical features when used as energy-transfer donors. Spectroscopic analysis of the emission from the microcavities shows that the high quality of WGMs enables a very efficient energy transfer to dye-loaded polymer nanoparticle acceptors placed in their vicinity. Compared to Förster resonance energy transfer, WGM-enabled energy transfer (WGET) occurs over a much more extended volume, thanks to the delocalization of the mode over a typically 105 times larger surface and to the extension of the WGM electromagnetic field to larger distances (>100 nm vs a few nm) from the surface of the microcavity. The resulting sensing scheme combines the sensitivity of WGM spectroscopy with the specificity and simple detection schemes of fluorescence energy transfer, thus providing a potentially powerful class of biosensors.

15.
Nat Commun ; 12(1): 6035, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654800

RESUMO

Between 6-20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na+, K+, and Cl- through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes.


Assuntos
Fenômenos Fisiológicos Celulares , Ritmo Circadiano/fisiologia , Transporte de Íons/fisiologia , Osmose , Animais , Sistema Cardiovascular/patologia , Células Cultivadas , Cloretos/metabolismo , Fibroblastos , Homeostase , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potássio/metabolismo , Proteoma , Sódio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética
16.
J Am Chem Soc ; 132(13): 4556-7, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20235547

RESUMO

We have developed a novel surface coating for semiconductor quantum dots (QDs) based on a heterobifunctional ligand that overcomes most of the previous limits of these fluorescent probes in bioimaging applications. Here we show that QDs capped with bidentate zwitterionic dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands are a favorable alternative to polyethylene glycol-coated nanoparticles since they combine small sizes, low nonspecific adsorption, preserved optical properties, and excellent stability over time and a wide range of pH and salinity. Additionally, these QDs can easily be functionalized with biomolecules such as streptavidin (SA) and biotin. We applied streptavidin-functionalized DHLA-SB QDs to track the intracellular recycling of cannabinoid receptor 1 (CB1R) in live cells. These QDs selectively recognized the pool of receptors at the cell surface via SA-biotin interactions with negligible nonspecific adsorption. The QDs retained their optical properties, allowing the internalization of CB1R into endosomes to be followed. Moreover, the cellular activity was apparently unaffected by the probe.


Assuntos
Betaína/análogos & derivados , Imagem Molecular/métodos , Pontos Quânticos , Ácido Tióctico/análogos & derivados , Betaína/química , Linhagem Celular , Sobrevivência Celular , Humanos , Ligantes , Microscopia de Fluorescência , Tamanho da Partícula , Receptor CB1 de Canabinoide/química , Propriedades de Superfície , Ácido Tióctico/química
17.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322532

RESUMO

The efficient intraoperative identification of cancers requires the development of the bright, minimally-toxic, tumor-specific near-infrared (NIR) probes as contrast agents. Luminescent semiconductor quantum dots (QDs) offer several unique advantages for in vivo cellular imaging by providing bright and photostable fluorescent probes. Here, we present the synthesis of ZnCuInSe/ZnS core/shell QDs emitting in NIR (~750 nm) conjugated to NAVPNLRGDLQVLAQKVART (A20FMDV2) peptide for targeting αvß6 integrin-rich head and neck squamous cell carcinoma (HNSCC). Integrin αvß6 is usually not detectable in nonpathological tissues, but is highly upregulated in HNSCC. QD-A20 showed αvß6 integrin-specific binding in two-dimension (2D) monolayer and three-dimension (3D) spheroid in vitro HNSCC models. QD-A20 exhibit limited penetration (ca. 50 µm) in stroma-rich 3D spheroids. Finally, we demonstrated the potential of these QDs by time-gated fluorescence imaging of stroma-rich 3D spheroids placed onto mm-thick tissue slices to mimic imaging conditions in tissues. Overall, QD-A20 could be considered as highly promising nanoprobes for NIR bioimaging and imaging-guided surgery.

18.
ACS Appl Mater Interfaces ; 11(28): 25008-25016, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264837

RESUMO

Intracellular and extracellular pH are key parameters in many physiological processes and diseases. For example, the extracellular pH of the tumor micro-environment is slightly more acidic than in healthy tissue. In vivo mapping of the extracellular pH within the tumor would therefore improve our understanding of the tumor physiology. Fluorescent semiconductor quantum dots (QDs) represent interesting probes for in vivo imaging, in particular in the shortwave infrared (SWIR) range. Here, pH-sensitive QD nanoprobes are developed using a conformation-switchable surface chemistry. The central fluorescent QD is coated with a copolymer ligand and conjugated to gold nanoparticle quenchers. As the pH decreases from physiological (7.5) to slightly acidic (5.5-6), the copolymer reversibly shrinks, which increases the energy transfer between the QD and the gold quenchers and modulates the QD fluorescence signal. This enables the design of ratiometric QD probes for biological pH range emitting in the visible or SWIR range. In addition, these probes can be easily encapsulated and remain functional within ghost erythrocyte membranes, which facilitate their in vivo application.

19.
ACS Nano ; 13(3): 3125-3131, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30835434

RESUMO

Whereas in vivo fluorescence imaging of cells immobilized within tissues provides a valuable tool to a broad range of biological studies, it still lacks the sensitivity required to visualize isolated cells circulating fast in the bloodstream due, in particular, to the autofluorescence from endogenous fluorophores. Time-gated imaging of near-infrared emitting ZnCuInSe/ZnS quantum dots (QDs) with fluorescence lifetimes in the range of 150-300 ns enables the efficient rejection of fast autofluorescence photons and the selection of QD fluorescence photons, thus significantly increasing sensitivity. We labeled model erythrocytes as well as lymphoma cells using these QDs coated with a stable zwitterionic polymer surface chemistry. After reinjection in the bloodstream, we were able to image and count individual QD-labeled cells circulating at mm·s-1 velocities in blood vessels.


Assuntos
Imagem Óptica , Pontos Quânticos/química , Análise de Célula Única , Animais , Linhagem Celular Tumoral , Eritrócitos/citologia , Fluorescência , Voluntários Saudáveis , Humanos , Raios Infravermelhos , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Fluorescência , Propriedades de Superfície , Fatores de Tempo
20.
Photodiagnosis Photodyn Ther ; 26: 150-156, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30885845

RESUMO

BACKGROUND: Quantum dots (QDs) bring new insights in cancer theranostics. Exceptional brightness together with the simple possibility to modify surface with targeting molecules make QDs attractive agents in fluorescence guided surgery and photodynamic therapy. Currently, many targeted QDs have been developed for theranostic purpose. However, their targeting ability was tested mainly in two dimensional monolayer tumor cell models, while our study includes 3D tumor model reflecting the specificity of in vivo tumor environment. METHODS: Core/multilayer shell CdSe/CdS/ZnS QDs were conjugated with folic acid (FA) and characterized spectroscopically. Cytotoxicity of QDs on KB and A549 cells lines were evaluated using the MTT assay. Cellular uptake of QDs was assessed by epifluorescent microscopy. To study the distribution of QDs in tumor tissue, KB spheroids were prepared by means of the liquid overlay technique and then frozen cut of spheroids treated with QDs were imaged by epifluorescence microscopy. RESULTS: We confirmed the specificity of QD-FA for the folic acid receptor positive KB cells. In 3D tumor spheroid model we demonstrated uptake enhancement of QD-FA compared with non-targeted QD. It was demonstrated that penetration profiles were similar for both QDs with penetration depth never exceeding 100 µm. CONCLUSIONS: We have demonstrated the effectiveness of FA conjugated QDs to target tumor spheroids thus confirming the crucial role of FRα receptor as a target. Further improvement of QD-FA targeting ability could be performed using dual targeting different targeting agents, such as FA and cyclic RGD.


Assuntos
Ácido Fólico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Pontos Quânticos/uso terapêutico , Células A549 , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Células KB , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/química , Pontos Quânticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA