Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Food Microbiol ; 90: 103491, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336362

RESUMO

The suitability of forty-one non-Lactobacillus strains to be used as selected starters for sourdough fermentation was evaluated. According to the data collected, Pediococcus pentosaceus OA1 and S3N3 and Leuconostoc citreum PRO17 were selected based on the optimal acidification and growth performances and the intense proteolytic activity (increase of TFFA up to 80%) on whole wheat flour doughs. A relevant degradation of phytic acid (up to 58%) and the increase of phenols content and scavenging activity (4- and 2-folds, respectively) were also observed. The technological performances were compared to two representative Lactobacillus strains (Lactobacillus plantarum and Lactobacillus sanfranciscensis). The investigation of the robustness of the selected strains during the propagation (back-slopping procedure) showed their long-term dominance only when singly-inoculated; while Leuc. citreum PRO17 dominated the fermentation when the strains were co-inoculated. The sourdoughs obtained by the non-Lactobacillus selected strains (singly or pooled) were used for breadmaking. Selected sourdoughs allowed the production of breads characterized by in-vitro protein digestibility (IVPD) higher than that of breads obtained with Lactobacillus strains or baker's yeast. The aroma profile, estimated by GC/MS, was complex and characterized by high concentration of the typical compounds (hexanol, 3-methylbutanol and 2-pentylfuran) of sourdough bread.


Assuntos
Bactérias/metabolismo , Pão/microbiologia , Fermentação , Farinha/microbiologia , Microbiologia de Alimentos/métodos , Bactérias/classificação , Concentração de Íons de Hidrogênio , Ácido Láctico , Lactobacillus/metabolismo , Leuconostoc/metabolismo , Pediococcus pentosaceus/metabolismo , Saccharomyces cerevisiae/metabolismo , Triticum/metabolismo
2.
Int J Food Sci Nutr ; 70(6): 701-713, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30810427

RESUMO

The study aimed at improving the nutritional profile of yeast leavened salt reduced sliced bread and puccia type bread fortified with a wheat-based Lactobacillus plantarum ITM21B fermentation product (Bio21B). The protein content of bread made under laboratory conditions was increased by using: (i) chickpea flour (CF) (15% wt/wt flour) and Bio21B or (ii) the Bio21B containing a fungal protease to favour the gluten hydrolysis. Products showed increased protein and total amino acid content and improved protein digestibility. Moreover, the formula significantly affected the protein pattern of breads which, according to the results of the microfluidic two-dimensional electrophoresis (µ2DE) protein pattern, were discriminated as observed by the PCA plot. The use of CF was validated at industrial pilot plant producing salt reduced sliced bread and puccia type bread. The resulting products showed improved nutritional profile and a sensory quality comparable to the company's products containing salt.


Assuntos
Pão/análise , Cicer , Fermentação , Farinha/análise , Lactobacillus plantarum/metabolismo , Cloreto de Sódio/metabolismo , Aminoácidos/análise , Digestão , Microbiologia de Alimentos , Glutens/análise , Glutens/metabolismo , Concentração de Íons de Hidrogênio , Proteínas/análise , Saccharomyces cerevisiae/metabolismo , Paladar , Triticum
3.
Appl Environ Microbiol ; 82(23): 6899-6911, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637884

RESUMO

Fructophilic lactic acid bacteria (FLAB) are strongly associated with the gastrointestinal tracts (GITs) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GITs of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of the Apulia region of Italy. Almost all of the isolates showed fructophilic tendencies: these isolates were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray targeting 190 carbon sources was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic, or gallic acids, as electron acceptors was investigated in fructose-based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by the 4 FLAB showing the highest phenolic acid reductase activity was investigated in glucose-based medium supplemented with p-coumaric acid. Metabolic responses observed through a phenotypic microarray suggested that FLAB may use p-coumaric acid as an external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid.IMPORTANCE Fructophilic lactic acid bacteria (FLAB) remain to be fully explored. This study intends to link unique biochemical features of FLAB with their habitat. The quite unique FLAB phenome within the group lactic acid bacteria (LAB) may have practical relevance in food fermentations. The FLAB phenome may have implications for the levels of hexose metabolism products in fermented foods, as well as food probiotication. Due to the harsh conditions of honeybees' GITs, these bacteria had to develop specific physiological and biochemical characteristics, such as tolerance to phenolic acids. The screening of FLAB strains based on metabolic pathways involving phenolic acids may allow the selection of starter cultures with both technological and functional beneficial attributes. Bioconversion of phenolic compounds may contribute to the aroma attributes and biofunctionality of fermented foods. Thus, the selection of FLAB strains as starter cultures with specific enzymatic activities involving phenolic acids may have a promising role in food fermentations.

4.
Microb Cell Fact ; 15: 72, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27142164

RESUMO

BACKGROUND: Among the oligosaccharides that may positively affect the gut microbiota, xylo-oligosaccharides (XOS) and arabinoxylan oligosaccharides (AXOS) possess promising functional properties. Ingestion of XOS has been reported to contribute to anti-oxidant, anti-bacterial, immune-modulatory and anti-diabetic activities. Because of the structural complexity and chemical heterogeneity, complete degradation of xylan-containing plant polymers requires the synergistic activity of several enzymes. Endo-xylanases and ß-D-xylosidases, collectively termed xylanases, represent the two key enzymes responsible for the sequential hydrolysis of xylan. Xylanase cocktails are used on an industrial scale for biotechnological purposes. Lactobacillus rossiae DSM 15814(T) can utilize an extensive set of carbon sources, an ability that is likely to contribute to its adaptive ability. In this study, the capacity of this strain to utilize XOS, xylan, D-xylose and L-arabinose was investigated. RESULTS: Genomic and transcriptomic analyses revealed the presence of two gene clusters, designated xyl and ara, encoding proteins predicted to be responsible for XOS uptake and hydrolysis and D-xylose utilization, and L-arabinose metabolism, respectively. The deduced amino acid sequence of one of the genes of the xyl gene cluster, LROS_1108 (designated here as xylA), shows high similarity to (predicted) ß-D-xylosidases encoded by various lactic acid bacteria, and belongs to glycosyl hydrolase family 43. Heterologously expressed XylA was shown to completely hydrolyse XOS to xylose and showed optimal activity at pH 6.0 and 40 °C. Furthermore, ß-D-xylosidase activity of L. rossiae DSM 15814(T) was also measured under sourdough conditions. CONCLUSIONS: This study highlights the ability of L. rossiae DSM 15814(T) to utilize XOS, which is a very useful trait when selecting starters with specific metabolic performances for sourdough fermentation or as probiotics.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lactobacillus/enzimologia , Lactobacillus/genética , Xilosidases/genética , Xilosidases/metabolismo , Arabinose/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Hidrólise , Lactobacillus/classificação , Família Multigênica , Oligossacarídeos/metabolismo , Filogenia , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura , Xilose/metabolismo , Xilosidases/química
5.
Appl Environ Microbiol ; 81(9): 3192-204, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25724957

RESUMO

Triticum turgidum subsp. durum was grown according to four farming systems: conventional (CONV), organic with cow manure (OMAN) or green manure (OLEG), and without inputs (NOINPUT). Some chemical and technological characteristics differed between CONV and organic flours. As shown by two-dimensional electrophoresis (2-DE) analysis, OMAN and OLEG flours showed the highest number of gliadins, and OMAN flour also had the highest number of high-molecular-mass glutenins. Type I sourdoughs were prepared at the laboratory level through a back-slopping procedure, and the bacterial ecology during sourdough preparation was described by 16S rRNA gene pyrosequencing. Before fermentation, the dough made with CONV flour showed the highest bacterial diversity. Flours were variously contaminated by genera belonging to the Proteobacteria, Firmicutes, and Actinobacteria. Mature sourdoughs were completely and stably dominated by lactic acid bacteria. The diversity of Firmicutes was the highest for mature sourdoughs made with organic and, especially, NOINPUT flours. Beta diversity analysis based on the weighted UniFrac distance showed differences between doughs and sourdoughs. Those made with CONV flour were separated from the other with organic flours. Lactic acid bacterium microbiota structure was qualitatively confirmed through the culturing method. As shown by PCR-denaturing gradient gel electrophoresis (DGGE) analysis, yeasts belonging to the genera Saccharomyces, Candida, Kazachstania, and Rhodotorula occurred in all sourdoughs. Levels of bound phenolic acids and phytase and antioxidant activities differed depending on the farming system. Mature sourdoughs were used for bread making. Technological characteristics were superior in the breads made with organic sourdoughs. The farming system is another determinant affecting the sourdough microbiota. The organic cultivation of durum wheat was reflected along the flour-sourdough fermentation-bread axis.


Assuntos
Bactérias/classificação , Bactérias/genética , Farinha/microbiologia , Microbiologia de Alimentos , Agricultura Orgânica/métodos , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Análise de Alimentos , Gliadina/análise , Glutens/análise , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Food Microbiol ; 47: 99-110, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25583343

RESUMO

This study aimed at describing the main chemical and technology features of eight Iranian wheat flours collected from industrial and artisanal mills. Their suitability for bread making was investigated using autochthonous sourdough starters. Chemical analyses showed high concentration of fibers and ash, and technology aptitude for making breads. As shown through 2-DE analyses, gliadin and glutenin subunits were abundant and varied among the flours. According to the back slopping procedure, type I sourdoughs were prepared from Iranian flours, and lactic acid bacteria were typed and identified. Strains of Pediococcus pentosaceus, Weissella cibaria, Weissella confusa, and Leuconostoc citreum were the most abundant. Based on the kinetics of growth and acidification, quotient of fermentation and concentration of total free amino acids, lactic acid bacteria were selected and used as sourdough mixed starters for bread making. Compared to spontaneous fermentation, sourdoughs fermented with selected and mixed starters favored the increase of the concentrations of organic acids and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities. Although the high concentration of fibers, selected and mixed starters improved the textural features of the breads. This study might had contribute to the exploitation of the potential of Iranian wheat flours and to extend the use of sourdough, showing positive technology, nutritional and, probably, economic repercussions.


Assuntos
Pão , Farinha , Microbiologia de Alimentos , Lactobacillaceae/isolamento & purificação , Lactobacillaceae/metabolismo , Triticum , 6-Fitase/metabolismo , Aminoácidos , Pão/análise , Pão/microbiologia , Eletroforese em Gel Bidimensional , Fermentação , Farinha/análise , Farinha/microbiologia , Glutens/análise , Lactobacillaceae/classificação , Lactobacillaceae/genética , Leuconostoc/genética , Leuconostoc/isolamento & purificação , Leuconostoc/metabolismo , Pediococcus/genética , Pediococcus/isolamento & purificação , Pediococcus/metabolismo , Triticum/química , Triticum/microbiologia , Weissella/genética , Weissella/isolamento & purificação , Weissella/metabolismo
7.
Appl Environ Microbiol ; 80(10): 3161-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24632249

RESUMO

Four traditional type I sourdoughs were comparatively propagated (28 days) under firm (dough yield, 160) and liquid (dough yield, 280) conditions to mimic the alternative technology options frequently used for making baked goods. After 28 days of propagation, liquid sourdoughs had the lowest pH and total titratable acidity (TTA), the lowest concentrations of lactic and acetic acids and free amino acids, and the most stable density of presumptive lactic acid bacteria. The cell density of yeasts was the highest in liquid sourdoughs. Liquid sourdoughs showed simplified microbial diversity and harbored a low number of strains, which were persistent. Lactobacillus plantarum dominated firm sourdoughs over time. Leuconostoc lactis and Lactobacillus brevis dominated only some firm sourdoughs, and Lactobacillus sanfranciscensis persisted for some time only in some firm sourdoughs. Leuconostoc citreum persisted in all firm and liquid sourdoughs, and it was the only species detected in liquid sourdoughs at all times; it was flanked by Leuconostoc mesenteroides in some sourdoughs. Saccharomyces cerevisiae, Candida humilis, Saccharomyces servazzii, Saccharomyces bayanus-Kazachstania sp., and Torulaspora delbrueckii were variously identified in firm and liquid sourdoughs. A total of 197 volatile components were identified through purge and trap-/solid-phase microextraction-gas chromatography-mass spectrometry (PT-/SPME-GC-MS). Aldehydes, several alcohols, and some esters were at the highest levels in liquid sourdoughs. Firm sourdoughs mainly contained ethyl acetate, acetic acid, some sulfur compounds, and terpenes. The use of liquid fermentation would change the main microbial and biochemical features of traditional baked goods, which have been manufactured under firm conditions for a long time.


Assuntos
Pão/microbiologia , Lactobacillus/metabolismo , Microbiota , Triticum/microbiologia , Leveduras/metabolismo , Biodiversidade , Pão/análise , Fermentação , Manipulação de Alimentos , Ácido Láctico/análise , Ácido Láctico/metabolismo , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Leveduras/genética , Leveduras/isolamento & purificação
8.
Food Microbiol ; 44: 96-107, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25084651

RESUMO

Six Albanian soft and durum wheat cultivars were characterized based on chemical and technological features, showing different attitudes for bread making. Gliadin and glutenin fractions were selectively extracted from flours, and subjected to two-dimensional electrophoresis. Linja 7 and LVS flours showed the best characteristics, and abundance of high molecular weight (HMW)-glutenins. Type I sourdoughs were prepared through back slopping procedure, and the lactic acid bacteria were typed and identified. Lactobacillus plantarum and Leuconostoc mesenteroides were the predominant species. Thirty-eight representative isolates were singly used for sourdough fermentation of soft and durum wheat Albanian flours and their selection was carried out based on growth and acidification, quotient of fermentation, and proteolytic activity. Two different pools of lactic acid bacteria were designed to ferment soft or durum wheat flours. Sourdough fermentation with mixed and selected starters positively affected the quotient of fermentation, concentration of free amino acids, profile of phenolic acids, and antioxidant and phytase activities. This study provided the basis to exploit the potential of wheat Albanian flours based on an integrated approach, which considered the characterization of the flours and the processing conditions.


Assuntos
Farinha/microbiologia , Lactobacillaceae/metabolismo , Microbiota , Triticum/microbiologia , Pão/análise , Pão/microbiologia , Fermentação , Farinha/análise , Ácido Láctico/metabolismo , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Triticum/química , Triticum/metabolismo
9.
Appl Environ Microbiol ; 79(24): 7827-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096427

RESUMO

The bacterial ecology during rye and wheat sourdough preparation was described by 16S rRNA gene pyrosequencing. Viable plate counts of presumptive lactic acid bacteria, the ratio between lactic acid bacteria and yeasts, the rate of acidification, a permutation analysis based on biochemical and microbial features, the number of operational taxonomic units (OTUs), and diversity indices all together demonstrated the maturity of the sourdoughs during 5 to 7 days of propagation. Flours were mainly contaminated by metabolically active genera (Acinetobacter, Pantoea, Pseudomonas, Comamonas, Enterobacter, Erwinia, and Sphingomonas) belonging to the phylum Proteobacteria or Bacteroidetes (genus Chryseobacterium). Their relative abundances varied with the flour. Soon after 1 day of propagation, this population was almost completely inhibited except for the Enterobacteriaceae. Although members of the phylum Firmicutes were present at very low or intermediate relative abundances in the flours, they became dominant soon after 1 day of propagation. Lactic acid bacteria were almost exclusively representative of the Firmicutes by this time. Weissella spp. were already dominant in rye flour and stably persisted, though they were later flanked by the Lactobacillus sakei group. There was a succession of species during 10 days of propagation of wheat sourdoughs. The fluctuation between dominating and subdominating populations of L. sakei group, Leuconostoc spp., Weissella spp., and Lactococcus lactis was demonstrated. Other subdominant species such as Lactobacillus plantarum were detectable throughout propagation. As shown by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, Saccharomyces cerevisiae dominated throughout the sourdough propagation. Notwithstanding variations due to environmental and technology determinants, the results of this study represent a clear example of how the microbial ecology evolves during sourdough preparation.


Assuntos
Bactérias/classificação , Biota , Microbiologia de Alimentos , Fungos/classificação , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , Fungos/genética , Dados de Sequência Molecular , Filogenia , Secale , Análise de Sequência de DNA , Fatores de Tempo , Triticum
10.
Foods ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766014

RESUMO

Plant-based milk alternatives have gained massive popularity among consumers because of their sustainable production compared to bovine milk and because of meeting the nutritional requests of consumers affected by cow milk allergies and lactose intolerance. In this work, hemp flour, in a blend with rice flour, was used to design a novel lactose- and gluten-free yogurt-like (YL) product with suitable nutritional, functional, and sensory features. The growth and the acidification of three different lactic acid bacteria strains were monitored to better set up the biotechnological protocol for making the YL product. Hemp flour conferred the high fiber (circa 2.6 g/100 g), protein (circa 4 g/100 g), and mineral contents of the YL product, while fermentation by selected lactic acid bacteria increased the antioxidant properties (+8%) and the soluble fiber (+0.3 g/100 g), decreasing the predicted glycemic index (-10%). As demonstrated by the sensory analysis, the biotechnological process decreased the earthy flavor (typical of raw hemp flour) and increased the acidic and creamy sensory perceptions. Supplementation with natural clean-label vanilla powder and agave syrup was proposed to further decrease the astringent and bitter flavors. The evaluation of the starter survival and biochemical properties of the product under refrigerated conditions suggests an estimated shelf-life of 30 days. This work demonstrated that hemp flour might be used as a nutritional improver, while fermentation with a selected starter represents a sustainable and effective option for exploiting its potential.

11.
Foods ; 12(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36900500

RESUMO

Microalgae are aquatic unicellular microorganisms and, although various species are approved for human consumption, Arthrospira and Chlorella are the most widespread. Several nutritional and functional properties have been bestowed to microalgae principal micro- and macro-nutrients, with antioxidant, immunomodulatory and anticancer being the most common. The many references to their potential as a food of the future is mainly ascribed to the high protein and essential amino acid content, but they are also a source of pigments, lipids, sterols, polysaccharides, vitamins, and phenolic compounds with positive effects on human health. Nevertheless, microalgae use is often hindered by unpleasant color and flavor and several strategies have been sought to minimize such challenges. This review provides an overview of the strategies so far proposed and the main nutritional and functional characteristic of microalgae and the foods made thereof. Processing treatments have been used to enrich microalgae-derived substrates in compounds with antioxidant, antimicrobial, and anti-hypertensive properties. Extraction, microencapsulation, enzymatic treatments, and fermentation are the most common, each with their own pros and cons. Yet, for microalgae to be the food of the future, more effort should be put into finding the right pre-treatments that can allow the use of the whole biomass and be cost-effective while bringing about features that go beyond the mere increase of proteins.

12.
Microorganisms ; 11(6)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37375109

RESUMO

Carob, an underutilized crop with several ecological and economic advantages, was traditionally used as animal feed and excluded from the human diet. Yet, nowadays, its beneficial effects on health are making it an interesting candidate as a food ingredient. In this study, a carob-based yogurt-like product was designed and fermented with six lactic acid bacteria strains, whose performances after fermentation and during shelf life were assessed through microbial and biochemical characterization. The strains showed different aptitudes to ferment the rice-carob matrix. Particularly, Lactiplantibacillus plantarum T6B10 was among the strains with the lowest latency phase and highest acidification at the end of fermentation. T6B10 also showed discrete proteolysis during storage, so free amino acids were up to 3-fold higher compared to the beverages fermented with the other strains. Overall, fermentation resulted in the inhibition of spoilage microorganisms, while an increase in yeasts was found in the chemically acidified control. The yogurt-like product was characterized by high-fiber and low-fat content; moreover, compared to the control, fermentation decreased the predicted glycemic index (-9%) and improved the sensory acceptability. Thus, this work demonstrated that the combination of carob flour and fermentation with selected lactic acid bacteria strains represents a sustainable and effective option to obtain safe and nutritious yogurt-like products.

13.
Int J Food Microbiol ; 404: 110322, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37454506

RESUMO

The nutritional quality of gluten-free (GF) products is usually improved by using flours derived from alternative grains (e.g., pseudocereals and legumes), additives and hydrolysates, leading to long ingredient lists in the labels, that conflict with current customer expectations. In this work, chestnut, carob, and hemp flours were used as mixed ingredients for making a gluten-free type-II sourdough. Three exopolysaccharides-producer lactic acid bacteria, belonging to Leuconostoc mesenteroides, Weissella cibaria, and Leuconostoc pseudomesenteroides, were used, and the fermentation processes (6 log10 cfu/g, 25 °C, 16 h) optimize to maximize the EPS synthesis (15.70 ± 2.1 mg/kg). The chestnut-hemp (70:30) type-II sourdough was included in a rice/corn gluten-free bread recipe also containing psyllium flour as structuring agent. Although the fortification with unfermented flours already led the achievement of 6 g/100 g of fiber (high fiber, Regulation EC n. 1924/2006) and content of magnesium higher than the daily reference intakes, the use of type-II sourdoughs led to a further structural, sensory, and nutritional improvements (e.g., decreasing the main anti-nutritional factor phytic acid). This work demonstrated that the use of ad-hoc selected ingredients and optimized protocol can be used to produce a GF and "clean label" bread with optimal nutritional features and appreciable sensory and structural properties.


Assuntos
Cannabis , Pão/microbiologia , Fermentação , Dieta Livre de Glúten , Valor Nutritivo , Farinha/microbiologia
14.
Antioxidants (Basel) ; 12(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627516

RESUMO

Despite its appealing composition, because it is rich in fibers and polyphenols, grape pomace, the major by-product of the wine industry, is still discarded or used for feed. This study aimed at exploiting grape pomace functional potential through fermentation with lactic acid bacteria (LAB). A systematic approach, including the progressively optimization of the grape pomace substrate, was used, evaluating pomace percentage, pH, and supplementation of nitrogen and carbon sources. When grape pomace was used at 10%, especially without pH correction, LAB cell viability decreased up to 2 log cycles. Hence, the percentage was lowered to 5 or 2.5% and supplementations with carbon and nitrogen sources, which are crucial for LAB metabolism, were considered aiming at obtaining a proper fermentation of the substrate. The optimization of the substrate enabled the comparison of strains performances and allowed the selection of the best performing strain (Lactiplantibacillus plantarum T0A10). A sourdough, containing 5% of grape pomace and fermented with the selected strain, showed high antioxidant activity on DPPH and ABTS radicals and anti-inflammatory potential on Caco2 cells. The anthocyanins profile of the grape pomace sourdough was also characterized, showing qualitative and quantitative differences before and after fermentation. Overall, the grape pomace sourdough showed promising applications as a functional ingredient in bread making.

15.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107220

RESUMO

Due to its high nutritional value and broad beneficial effects, the artichoke plant (Cynara cardunculus L.) is an excellent healthy food candidate. Additionally, the artichoke by-products are usually discarded even though they still contain a huge concentration of dietary fibers, phenolic acids, and other micronutrients. The present work aimed to characterize a laboratory-made gluten-free bread (B) using rice flour supplemented with a powdered extract from artichoke leaves (AEs). The AE, accounting for the 5% of titratable chlorogenic acid, was added to the experimental gluten-free bread. Accounting for different combinations, four different bread batches were prepared. To evaluate the differences, a gluten-free type-II sourdough (tII-SD) was added in two doughs (SB and SB-AE), while the related controls (YB and YB-AE) did not contain the tII-SD. Profiling the digested bread samples, SB showed the lowest glycemic index, while SB-AE showed the highest antioxidant properties. The digested samples were also fermented in fecal batches containing viable cells from fecal microbiota samples obtained from healthy donors. Based on plate counts, no clear tendencies emerged concerning the analyzed microbial patterns; by contrast, when profiling volatile organic compounds, significant differences were observed in SB-AE, exhibiting the highest scores of hydrocinnamic and cyclohexanecarboxylic acids. The fecal fermented supernatants were recovered and assayed for healthy properties on human keratinocyte cell lines against oxidative stress and for effectiveness in modulating the expression of proinflammatory cytokines in Caco-2 cells. While the first assay emphasized the contribution of AE to protect against stressor agents, the latter enlightened how the combination of SB with AE decreased the cellular TNF-α and IL1-ß expression. In conclusion, this preliminary study suggests that the combination of AE with sourdough biotechnology could be a promising tool to increase the nutritional and healthy features of gluten-free bread.

16.
Appl Microbiol Biotechnol ; 93(2): 473-85, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22094979

RESUMO

A gluten-free (GF) diet is recognised as being the only accepted treatment for celiac disease-a permanent autoimmune enteropathy triggered by the ingestion of gluten-containing cereals. The bakery products available in today's gluten-free market are characterised by lower palatability than their conventional counterparts and may lead to nutritional deficiencies of vitamins, minerals and fibre. Thus, the production of high-quality gluten-free products has become a very important socioeconomical issue. Microbial fermentation by means of lactic acid bacteria and yeast is one of the most ecological/economical methods of producing and preserving food. In this review, the role of a fermentation process for improving the quality of GF products and for developing a new concept of GF products with nutraceutical and health-promoting characteristics will be examined.


Assuntos
Bactérias/metabolismo , Dieta Livre de Glúten , Microbiologia de Alimentos , Glutens/metabolismo , Leveduras/metabolismo , Fermentação
17.
Front Microbiol ; 13: 1000962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212839

RESUMO

The use of the halophile microorganism Haloferax mediterranei, able to synthesize poly(hydroxybutyrate-hydroxyvalerate) (PHBV), is considered as a promising tool for the industrial production of bioplastic through bioprocessing. A consistent supplementation of the growth substrate in carbohydrates and minerals is overall necessary to allow its PHBV production. In this work, wasted bread was used as substrate for bioplastic production by microbial fermentation. Instead of the consistent and expensive minerals supplement required for Hfx. mediterranei DSM1411 growth, microfiltered seawater was added to the wasted bread-derived substrate. The suitable ratio of wasted bread homogenate and seawater, corresponding to 40:60, was selected. The addition of proteases and amylase to the bread homogenate promoted the microbial growth but it did not correspond to the increase of bioplastic production by the microorganism, that reach, under the experimental conditions, 1.53 g/L. An extraction procedure of the PHBV from cells, based on repeated washing with water, followed or not by a purification through ethanol precipitation, was applied instead of the conventional extraction with chloroform. Yield of PHBV obtained using the different extraction methods were 21.6 ± 3.6 (standard extraction/purification procedure with CHCl3:H2O mixture), 24.8 ± 3.0 (water-based extraction), and 19.8 ± 3.3 mg PHAs/g of wasted bread (water-based extraction followed by ethanol purification). Slightly higher hydroxyvalerate content (12.95 vs 10.78%, w/w) was found in PHBV obtained through the water-based extraction compared to the conventional one, moreover, the former was characterized by purity of 100% (w/w). Results demonstrated the suitability of wasted bread, supplemented with seawater, to be used as substrate for bioplastic production through fermentation. Results moreover demonstrated that a solvent-free extraction, exclusively based on osmotic shock, could be used to recover the bioplastic from cells.

18.
Foods ; 10(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494460

RESUMO

The growing prevalence of allergenicity towards cow's milk, lactose intolerance [...].

19.
Foods ; 10(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672491

RESUMO

The market of gluten-free (GF) products has been steadily increasing in last few years. Due to the technological importance of gluten, the GF food production is still a challenge for the industry. Indeed, large quantities of fat, sugars, structuring agents, and flavor enhancers are added to GF formulations to make textural and sensorial characteristics comparable to conventional products, leading to nutritional and caloric intake imbalances. The formulation of the novel "clean-label" GF bread included a commonly used mixture of maize and rice flour (ratio 1:1) fortified with selected protein-rich flours. Naturally hydrocolloids-containing flours (psyllium, flaxseed, chia) were included in the bread formulation as structuring agents. A type-II sourdough was obtained by using a selected Weissella cibaria P9 and a GF sucrose-containing flour as substrate for fermentation to promote the exo-polysaccharides synthesis by the starter lactic acid bacterium. A two-step protocol for bread-making was set-up: first, the GF sourdough was fermented (24 h at 30 °C); then, it was mixed with the other ingredients (30% of the final dough) and leavened with baker's yeast before baking. Overall, the novel GF bread was characterized by good textural properties, high protein content (8.9% of dry matter) and in vitro protein digestibility (76.9%), low sugar (1.0% of dry matter) and fat (3.1% of dry matter) content, and an in vitro predicted glycemic index of 85.

20.
Foods ; 10(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546307

RESUMO

Due to the increasing demand for milk alternatives, related to both health and ethical needs, plant-based yogurt-like products have been widely explored in recent years. With the main goal to obtain snacks similar to the conventional yogurt in terms of textural and sensory properties and ability to host viable lactic acid bacteria for a long-time storage, several plant-derived ingredients (e.g., cereals, pseudocereals, legumes, and fruits) as well as technological solutions (e.g., enzymatic and thermal treatments) have been investigated. The central role of fermentation in yogurt-like production led to specific selections of lactic acid bacteria strains to be used as starters to guarantee optimal textural (e.g., through the synthesis of exo-polysaccharydes), nutritional (high protein digestibility and low content of anti-nutritional compounds), and functional (synthesis of bioactive compounds) features of the products. This review provides an overview of the novel insights on fermented yogurt-like products. The state-of-the-art on the use of unconventional ingredients, traditional and innovative biotechnological processes, and the effects of fermentation on the textural, nutritional, functional, and sensory features, and the shelf life are described. The supplementation of prebiotics and probiotics and the related health effects are also reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA