Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Sci ; 125(Pt 11): 2721-31, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22344253

RESUMO

Rho GTPases are regulated in complex spatiotemporal patterns that might be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialisation of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the orthologue of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localise differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck, but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localisation is largely dependent on Ack1, a SEL1-domain-containing protein; Tus1 function and localisation is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Redes Reguladoras de Genes/genética , Mutação/genética , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo
2.
J Biol Chem ; 286(7): 5187-96, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21135091

RESUMO

Vesicular transport shuttles cargo among intracellular compartments. Several stages of vesicular transport are mediated by the small GTPase Arf, which is controlled in a cycle of GTP binding and hydrolysis by Arf guanine-nucleotide exchange factors and Arf GTPase-activating proteins (ArfGAPs), respectively. In budding yeast the Age2 + Gcs1 ArfGAP pair facilitates post-Golgi transport. We have found the AGE1 gene, encoding another ArfGAP, can in high gene-copy number alleviate the temperature sensitivity of cells carrying mutations affecting the Age2 + Gcs1 ArfGAP pair. Moreover, increased AGE1 gene dosage compensates for the complete absence of the otherwise essential Age2 + Gcs1 ArfGAP pair. Increased dosage of SFH2, encoding a phosphatidylinositol transfer protein, also allows cell growth in the absence of the Age2 + Gcs1 pair, but good growth in this situation requires Age1. The ability of Age1 to overcome the need for Age2 + Gcs1 depends on phospholipase D activity that regulates lipid composition. We show by direct assessment of Age1 ArfGAP activity that Age1 is regulated by lipid composition and can provide ArfGAP function for post-Golgi transport.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipase D/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Transporte Biológico/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/genética , Dosagem de Genes , Complexo de Golgi/genética , Lipídeos de Membrana/genética , Fosfolipase D/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Transportadoras/genética
3.
Traffic ; 10(9): 1362-75, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19602196

RESUMO

The ArfGAP Glo3 is required for coat protein I vesicle generation in the Golgi-endoplasmic reticulum (ER) shuttle. The best-understood role of Glo3 is the stimulation of the GTPase activity of Arf1. In this study, we characterized functional domains of the ArfGAP Glo3 and identified an interaction interface for coatomer, SNAREs and cargo in the central region of Glo3 (BoCCS region). The GAP domain together with the BoCCS region is necessary and sufficient for all vital Glo3 functions. Expression of a truncated Glo3 lacking the GAP domain results in a dominant negative growth phenotype in glo3Delta cells at 37 degrees C. This phenotype was alleviated by mutating either the BoCCS region or the Glo3 regulatory motif (GRM), or by overexpression of ER-Golgi SNAREs or the ArfGAP Gcs1. The GRM is not essential for Glo3 function; it may act as an intrinsic sensor coupling GAP activity to SNARE binding to avoid dead-end complex formation at the Golgi membrane. Our data suggest that membrane-interaction modules and cargo-sensing regions have evolved independently in ArfGAP1s versus ArfGAP2/3s.


Assuntos
Proteína Coatomer/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Complexo I de Proteína do Envoltório/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo
4.
Curr Biol ; 18(22): R1053-4, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19036332

RESUMO

How are SNARE proteins included into transport vesicles? One way is through the interaction with ArfGAP proteins. A recent study reports that the ArfGAP Hrb can wrap around the SNARE VAMP7, causing its endocytosis by clathrin-coated vesicles.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Proteínas R-SNARE/metabolismo , Transporte Biológico/fisiologia , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Estrutura Terciária de Proteína , Proteínas R-SNARE/química , Proteínas R-SNARE/fisiologia
5.
Proc Natl Acad Sci U S A ; 105(2): 588-93, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18182495

RESUMO

The process by which some eukaryotic organelles, for example the endomembrane system, evolved without endosymbiotic input remains poorly understood. This problem largely arises because many major cellular systems predate the last common eukaryotic ancestor (LCEA) and thus do not provide examples of organellogenesis in progress. A model is emerging whereby gene duplication and divergence of multiple "specificity-" or "identity-" encoding proteins for the various endomembranous organelles produced the diversity of nonendosymbiotically derived cellular compartments present in modern eukaryotes. To address this possibility, we analyzed three molecular components of the endocytic membrane-trafficking machinery. Phylogenetic analyses of the endocytic syntaxins, Rab 5, and the beta-adaptins each reveal a pattern of ancestral, undifferentiated endocytic homologues in the LCEA. Subsequently, these undifferentiated progenitors independently duplicated in widely divergent lineages, convergently producing components with similar endocytic roles, e.g., beta1 and beta2-adaptin. In contrast, beta3, beta4, and all other adaptin complex subunits, as well as paralogues of the syntaxins and Rabs specific for the other membrane-trafficking organelles, all evolved before the LCEA. Thus, the process giving rise to the differentiated organelles of the endocytic system appears to have been interrupted by the major speciation event that produced the extant eukaryotic lineages. These results suggest that although many endocytic components evolved before the LCEA, other major features evolved independently and convergently after diversification into the primary eukaryotic supergroups. This finding provides an example of a basic cellular system that was simpler in the LCEA than in many extant eukaryotes and yields insight into nonendosymbiotic organelle evolution.


Assuntos
Endocitose , Subunidades alfa do Complexo de Proteínas Adaptadoras/química , Animais , Arabidopsis/metabolismo , Evolução Biológica , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Modelos Biológicos , Modelos Genéticos , Organelas/metabolismo , Filogenia , Transporte Proteico , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
6.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33734376

RESUMO

The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous system was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement the loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.


Assuntos
Prolina/biossíntese , Pirrolina Carboxilato Redutases/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Prolina/química , Prolina/genética , Pirrolina Carboxilato Redutases/metabolismo
7.
Mol Biol Cell ; 13(7): 2193-206, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12134061

RESUMO

Yeast phosphatidylinositol transfer protein (Sec14p) coordinates lipid metabolism with protein-trafficking events. This essential Sec14p requirement for Golgi function is bypassed by mutations in any one of seven genes that control phosphatidylcholine or phosphoinositide metabolism. In addition to these "bypass Sec14p" mutations, Sec14p-independent Golgi function requires phospholipase D activity. The identities of lipids that mediate Sec14p-dependent Golgi function, and the identity of the proteins that respond to Sec14p-mediated regulation of lipid metabolism, remain elusive. We now report genetic evidence to suggest that two ADP ribosylation factor-GTPase-activating proteins (ARFGAPs), Gcs1p and Age2p, may represent these lipid-responsive elements, and that Gcs1p/Age2p act downstream of Sec14p and phospholipase D in both Sec14p-dependent and Sec14p-independent pathways for yeast Golgi function. In support, biochemical data indicate that Gcs1p and Age2p ARFGAP activities are both modulated by lipids implicated in regulation of Sec14p pathway function. These results suggest ARFGAPs are stimulatory factors required for regulation of Golgi function by the Sec14p pathway, and that Sec14p-mediated regulation of lipid metabolism interfaces with the activity of proteins involved in control of the ARF cycle.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Ribosilação do ADP/genética , Sequência de Aminoácidos , Transporte Biológico/fisiologia , Proteínas Sanguíneas/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Proteínas Ativadoras de GTPase/genética , Proteínas de Membrana/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fosfolipase D/genética , Fosfolipase D/metabolismo , Proteínas de Transferência de Fosfolipídeos , Fosfoproteínas/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Vacúolos/metabolismo , Vacúolos/ultraestrutura
8.
Mol Biol Cell ; 22(13): 2337-47, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21562219

RESUMO

Small monomeric G proteins regulated in part by GTPase-activating proteins (GAPs) are molecular switches for several aspects of vesicular transport. The yeast Gcs1 protein is a dual-specificity GAP for ADP-ribosylation factor (Arf) and Arf-like (Arl)1 G proteins, and also has GAP-independent activities. The absence of Gcs1 imposes cold sensitivity for growth and endosomal transport; here we present evidence that dysregulated Arl1 may cause these impairments. We show that gene deletions affecting the Arl1 or Ypt6 vesicle-tethering pathways prevent Arl1 activation and membrane localization, and restore growth and trafficking in the absence of Gcs1. A mutant version of Gcs1 deficient for both ArfGAP and Arl1GAP activity in vitro still allows growth and endosomal transport, suggesting that the function of Gcs1 that is required for these processes is independent of GAP activity. We propose that, in the absence of this GAP-independent regulation by Gcs1, the resulting dysregulated Arl1 prevents growth and impairs endosomal transport at low temperatures. In cells with dysregulated Arl1, an increased abundance of the Arl1 effector Imh1 restores growth and trafficking, and does so through Arl1 binding. Protein sequestration at the trans-Golgi membrane by dysregulated, active Arl1 may therefore be the mechanism of inhibition.


Assuntos
Complexo de Golgi/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Corpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Aminoácido N-Acetiltransferase/metabolismo , Temperatura Baixa , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endocitose/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Acetiltransferase N-Terminal C , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Rede trans-Golgi/genética
9.
Proc Natl Acad Sci U S A ; 102(36): 12777-82, 2005 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16126894

RESUMO

The budding yeast Saccharomyces cerevisiae contains a family of Arf (ADP-ribosylation factor) GTPase activating protein (GAP) proteins with the Gcs1 + Age2 ArfGAP pair providing essential overlapping function for the movement of transport vesicles from the trans-Golgi network. We have generated a temperature-sensitive but stable version of the Gcs1 protein that is impaired only for trans-Golgi transport and find that deleterious effects of this enfeebled Gcs1-4 mutant protein are relieved by increased gene dosage of the gcs1-4 mutant gene itself or by the SFH2 gene (also called CSR1), encoding a phosphatidylinositol transfer protein (PITP). This effect was not seen for the SEC14 gene, encoding the founding member of the yeast PITP protein family, even though the Gcs1 and Age2 ArfGAPs are known to be downstream effectors of Sec14-mediated activity for trans-Golgi transport. Sfh2-mediated suppression of inadequate Gcs1-4 function depended on phospholipase D, whereas inadequate Gcs1-4 activity was relieved by increasing levels of diacylglycerol (DAG). Recombinant Gcs1 protein was found to bind certain phospholipids but not DAG. Our findings favor a model of Gcs1 localization through binding to specific phospholipids and activation of ArfGAP activity by DAG-mediated membrane curvature as the transport vesicle is formed. Thus, ArfGAPs are subject to both temporal and spatial regulation that is facilitated by Sfh2-mediated modulation of the lipid environment.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Fatores de Ribosilação do ADP/genética , Membrana Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diglicerídeos/química , Diglicerídeos/farmacologia , Ativação Enzimática , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Complexo de Golgi/efeitos dos fármacos , Mutação/genética , Fosfolipase D/genética , Fosfolipase D/metabolismo , Proteínas de Transferência de Fosfolipídeos/classificação , Proteínas de Transferência de Fosfolipídeos/genética , Transporte Proteico/efeitos dos fármacos , Piridoxal/análogos & derivados , Piridoxal/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA