Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 11(2): 024003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510543

RESUMO

Purpose: The goal of this study was to develop a fully convolutional network (FCN) tool to automatedly segment the left-ventricular (LV) myocardium in displacement encoding with stimulated echoes MRI. The segmentation results are used for LV chamber quantification and strain analyses in breast cancer patients susceptible to cancer therapy-related cardiac dysfunction (CTRCD). Approach: A DeepLabV3+ FCN with a ResNet-101 backbone was custom-designed to conduct chamber quantification on 45 female breast cancer datasets (23 training, 11 validation, and 11 test sets). LV structural parameters and LV ejection fraction (LVEF) were measured, and myocardial strains estimated with the radial point interpolation method. Myocardial classification validation was against quantization-based ground-truth with computations of accuracy, Dice score, average perpendicular distance (APD), Hausdorff-distance, and others. Additional validations were conducted with equivalence tests and Cronbach's alpha (C-α) intraclass correlation coefficients between the FCN and a vendor tool on chamber quantification and myocardial strain computations. Results: Myocardial classification results against ground-truth were Dice=0.89, APD=2.4 mm, and accuracy=97% for the validation set and Dice=0.90, APD=2.5 mm, and accuracy=97% for the test set. The confidence intervals (CI) and two one-sided t-test results of equivalence tests between the FCN and vendor-tool were CI=-1.36% to 2.42%, p-value < 0.001 for LVEF (58±5% versus 57±6%), and CI=-0.71% to 0.63%, p-value < 0.001 for longitudinal strain (-15±2% versus -15±3%). Conclusions: The validation results were found equivalent to the vendor tool-based parameter estimates, which show that accurate LV chamber quantification followed by strain analysis for CTRCD investigation can be achieved with our proposed FCN methodology.

2.
J Biomech ; 130: 110878, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871894

RESUMO

This study's purpose was to develop a direct MRI-based, deep-learning semantic segmentation approach for computing global longitudinal strain (GLS), a known metric for detecting left-ventricular (LV) cardiotoxicity in breast cancer. Displacement Encoding with Stimulated Echoes cardiac image phases acquired from 30 breast cancer patients and 30 healthy females were unwrapped via a DeepLabV3 + fully convolutional network (FCN). Myocardial strains were directly computed from the unwrapped phases with the Radial Point Interpolation Method. FCN-unwrapped phases of a phantom's rotating gel were validated against quality-guided phase-unwrapping (QGPU) and robust transport of intensity equation (RTIE) phase-unwrapping. FCN performance on unwrapping human LV data was measured with F1 and Dice scores versus QGPU ground-truth. The reliability of FCN-based strains was assessed against RTIE-based strains with Cronbach's alpha (C-α) intraclass correlation coefficient. Mean squared error (MSE) of unwrapping the phantom experiment data at 0 dB signal-to-noise ratio were 1.6, 2.7 and 6.1 with FCN, QGPU and RTIE techniques. Human data classification accuracies were F1 = 0.95 (Dice = 0.96) with FCN and F1 = 0.94 (Dice = 0.95) with RTIE. GLS results from FCN and RTIE were -16 ± 3% vs. -16 ± 3% (C-α = 0.9) for patients and -20 ± 3% vs. -20 ± 3% (C-α = 0.9) for healthy subjects. The low MSE from the phantom validation demonstrates accuracy of phase-unwrapping with the FCN and comparable human subject results versus RTIE demonstrate GLS analysis accuracy. A deep-learning methodology for phase-unwrapping in medical images and GLS computation was developed and validated in a heterogeneous cohort.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Feminino , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
3.
Br J Radiol ; 94(1120): 20201101, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571002

RESUMO

OBJECTIVE: Left-ventricular (LV) strain measurements with the Displacement Encoding with Stimulated Echoes (DENSE) MRI sequence provide accurate estimates of cardiotoxicity damage related to chemotherapy for breast cancer. This study investigated an automated and supervised deep convolutional neural network (DCNN) model for LV chamber quantification before strain analysis in DENSE images. METHODS: The DeepLabV3 +DCNN with three versions of ResNet-50 backbone was designed to conduct chamber quantification on 42 female breast cancer data sets. The convolutional layers in the three ResNet-50 backbones were varied as non-atrous, atrous and modified, atrous with accuracy improvements like using Laplacian of Gaussian filters. Parameters such as LV end-diastolic diameter (LVEDD) and ejection fraction (LVEF) were quantified, and myocardial strains analyzed with the Radial Point Interpolation Method (RPIM). Myocardial classification was validated with the performance metrics of accuracy, Dice, average perpendicular distance (APD) and others. Repeated measures ANOVA and intraclass correlation (ICC) with Cronbach's α (C-Alpha) tests were conducted between the three DCNNs and a vendor tool on chamber quantification and myocardial strain analysis. RESULTS: Validation results in the same test-set for myocardial classification were accuracy = 97%, Dice = 0.92, APD = 1.2 mm with the modified ResNet-50, and accuracy = 95%, Dice = 0.90, APD = 1.7 mm with the atrous ResNet-50. The ICC results between the modified ResNet-50, atrous ResNet-50 and vendor-tool were C-Alpha = 0.97 for LVEF (55±7%, 54±7%, 54±7%, p = 0.6), and C-Alpha = 0.87 for LVEDD (4.6 ± 0.3 cm, 4.6 ± 0.3 cm, 4.6 ± 0.4 cm, p = 0.7). CONCLUSION: Similar performance metrics and equivalent parameters obtained from comparisons between the atrous networks and vendor tool show that segmentation with the modified, atrous DCNN is applicable for automated LV chamber quantification and subsequent strain analysis in cardiotoxicity. ADVANCES IN KNOWLEDGE: A novel deep-learning technique for segmenting DENSE images was developed and validated for LV chamber quantification and strain analysis in cardiotoxicity detection.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/diagnóstico por imagem , Cardiotoxicidade/diagnóstico por imagem , Feminino , Ventrículos do Coração/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA