Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37109884

RESUMO

The use of modern materials in sports, in terms of chemical composition and surface texture, entails both progress in results and an increasing discrepancy in the technical parameters of the equipment used. This paper aims to demonstrate the differences between balls admitted to a league and world championships in composition, surface texture, and the influence of these parameters on the water polo game. This research compared two new balls produced by top companies producing sports accessories (Kap 7 and Mikasa). To obtain the goal, the measurement of the contact angle, analysis of the material using Fourier-transform infrared spectroscopy, and optical microscopic evaluation were used. The analysis of the surface free energy shows significant differences (Kap 7 32.16 mJ/m2, Mikasa 36.48 mJ/m2). In the case of both balls, anisotropies of the structure of the furrows were observed, however, the Mikasa ball is slightly more homogeneous than the Kap 7 ball. The obtained results from the analysis of the contact angle, as well as the composition and real feedback from the players, indicated the need to standardize the material aspect of the regulations so that the sports results are repeatable every time.

2.
Materials (Basel) ; 15(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591653

RESUMO

The main aim of the study was to synthesize and analyze spectral data to determine the structure and stereometry of the carbon-based porous material internal structure. Samples of a porous biomaterial were synthesized through anionic polymerization following our own patent and then carbonized. The samples were investigated using MALDI ToF MS, FTIR ATR spectroscopy, optic microscopy, SEM, confocal laser scanning microscopy and CMT imaging. The analysis revealed the chemical and stereological structure of the obtained porous biomaterial. Then, the parameters characterizing the pore geometry and the porosity of the samples were calculated. The developed material can be used to collect adsorption of breathing phase samples to determine the parity composition of exhaled air.

3.
Materials (Basel) ; 15(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683192

RESUMO

Ni-poly(DPU) composite powder was produced under galvanostatic conditions from a nickel bath with the addition of pulverized polymer obtained during the shredding of polyurethane foam (poly(DPU)). The Ni-poly(DPU) composite powder was characterized by the presence of polymer particles covered with an electrolytical amorphous-nanocrystalline nickel coating. The phase structure, chemical composition, morphology, and the distribution of elements was investigated. The chemical analysis showed that the powder contains 41.7% Ni, 16.4% C, 15.7% O, 8.2% P and 0.10% S. The other components were not determined (nitrogen and hydrogen). The phase analysis showed the presence of NiC phase. Composite powder particles are created as a result of the adsorption of Me ions on the fragmented polymer. The current flowing through the galvanic bath forces the flow of the particles. The foam particles with adsorbed nickel ions are transported to the cathode surface, where the Ni2+ is discharged. The presence of compound phosphorus in galvanic solution generates the formation of amorphous-nanocrystalline nickel, which covers the polymer particles. The formed nickel-polymer composite powder falls to the bottom of the cell.

4.
Polymers (Basel) ; 13(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685330

RESUMO

This research aimed to examine the mechanical properties of polycarbonate-based composites filled with both organic and inorganic reinforcements before and after simulated environmental degradation. Series of polycarbonate-based samples were prepared in the form of thin tapes. Their rheological properties were examined. Then, the samples were exposed to artificial environmental conditions. Finally, their rheological properties were examined once more, and the results were compared with those obtained for untreated samples. This paper presents basic research on the application of inorganic fillers to polycarbonate in order to determine the influence of the filler on the behavior of the obtained material. The aim of the work was to determine the usefulness and purpose of using this type of filler in polycarbonates for applications in contact with ultraviolet radiation, especially medical applications.

5.
Materials (Basel) ; 14(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34772121

RESUMO

Ni-P-ZrO2 composite powder was obtained from a galvanic nickel bath with ZrO2 powder. Production was conducted under galvanostatic conditions. The Ni-P-ZrO2 composite powder was characterized by the presence of ZrO2 particles covered with electrolytical nanocrystalline Ni-P coating. The chemical composition (XRF method), phase structure (XRD method) and morphology (SEM) of Ni-P-ZrO2 and the distribution of elements in the powder were all investigated. Based on the analyses, it was found that the obtained powder contained about 50 weight % Zr and 40 weight % Ni. Phase structure analysis showed that the basic crystalline component of the tested powder is a mixed oxide of zirconium and yttrium Zr0.92Y0.08O1.96. In addition, the sample contains very large amounts of amorphous compounds (Ni-P). The mechanism to produce the composite powder particles is explained on the basis of Ni2+ ions adsorption process on the metal oxide particles. Current flow through the cell forces the movement of particles in the bath. Oxide grains with adsorbed nickel ions were transported to the cathode surface. Ni2+ ions were discharged. The oxide particles were covered with a Ni-P layer and the heavy composite grains of Ni-P-ZrO2 flowed down to the bottom of the cell.

6.
Materials (Basel) ; 13(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155698

RESUMO

The paper presents research on evaluation of corrosion resistance of Ni-W alloy coatings subjected to heat treatment. The corrosion resistance was tested in 5% NaCl solution by the use of potentiodynamic polarization technique and electrochemical impedance spectroscopy. Characteristics of the Ni-W coatings after heat treatment were carried out using scanning electron microscopy, scanning Kelvin probe technique and X-ray diffraction. Suggested reasons for the improvement of properties of the heat treated Ni-W coating, obtained at the lowest current density value (125 mA∙cm-2), are the highest tungsten content (c.a. 25 at.%) as well as the smallest and the most homogeneous electrochemically active surface area.

7.
Materials (Basel) ; 13(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349439

RESUMO

The paper presents the results of tests on the corrosion resistance of Fe40Al5Cr0.2TiB alloy after casting, plastic working using extrusion and rolling methods. Examination of the microstructure of the Fe40Al5Cr0.2TiB alloy after casting and after plastic working was performed on an Olympus GX51 light microscope. The stereological relationships of the alloy microstructure in the state after crystallization and after plastic working were determined. The quantitative analysis of the structure was conducted after testing with the EBSD INCA HKL detector and the Nordlys II analysis system (Channel 5), which was equipped with the Hitachi S-3400N microscope. Structure tests and corrosion tests were performed on tests cut perpendicular to the ingot axis, extrusion direction, and rolling direction. As a result of the tests, it was found that the crystallized alloy has better corrosion resistance than plastically processed material. Plastic working increases the intensity of the electrochemical corrosion of the examined alloy. It was found that as-cast alloy is the most resistant to corrosion in a 5% NaCl compared with the alloys after hot extrusion and after hot rolling. The parameters in this study show the smallest value of the corrosion current density and corrosion rate as well as the more positive value of corrosion potential.

8.
Materials (Basel) ; 13(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198345

RESUMO

Polyaniline (PANI) was synthesized chemically with the modified rapid mixing protocol in the presence of sulfuric acid of various concentrations. A two-step synthetic procedure was utilized maintaining low-temperature conditions. Application of the modified rapid mixing protocol allowed obtaining a material with local ordering. A higher concentration of acid allowed obtaining a higher yield of the reaction. Structural characterization performed with Fourier-transform infrared (FTIR) analysis showed the vibration bands characteristic of the formation of the emeraldine salt in both products. Ultraviolet-visible light (UV-Vis) spectroscopy was used for the polaronic band and the p-p* band determination. The absorption result served to estimate the average oxidation level of PANI by comparison of the ratio of the absorbance of the polaronic band to that of the π-π* transition. The absorbance ratio index was higher for PANI synthesized in a more acidic solution, which showed a higher doping level for this polymer. For final powder products, particle size distributions were also estimated, proving that PANI (5.0 M) is characterized by a larger number of small particles; however, these particles can more easily agglomerate and form larger structures. The X-ray diffraction (XRD) patterns revealed an equilibrium between the amorphous and semicrystalline phase in the doped PANI. A higher electrical conductivity value was measured for polymer synthesized in a higher acid concentration. The time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis showed that the molecular composition of the polymers was the same; hence, the difference in properties was a result of local ordering.

9.
Polymers (Basel) ; 11(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554275

RESUMO

In today's analytical trends, there is an ever-increasing importance of polymeric materials for low molecular weight compounds including amines and drugs because they can act as carriers or capture amines or drugs. The use of this type of materials will allow the development of modern materials for the chromatographic column beds and the substrates of selective sensors. Moreover, these kinds of materials could be used as a drug carrier. Therefore, the aim of this study is presenting the synthesis and complexing properties of star-shaped oxiranes as a new sensor for the selective complexation of low molecular weight compounds. Propylene oxide and selected oxirane monomers with carbazolyl in the substituent were selected as the monomers in this case and tetrahydrofuran as its solvent. The obtained polymer structures were characterized using the MALDI-TOF. It was found that in the initiation step potassium hydride deprotonates the monomer molecule and takes also part in the nucleophilic substitution. The resulting polymeric material preferably cross-linked with selected di-oxiranes (1,2,7,8-diepoksyoktan in respect ratio 3:1 according to active center) was then used as a stationary phase in the column and thin layer chromatography for amine separation and identification. Sorption ability of the resulting deposits was determined using a quartz microbalance (QCMB). The study was carried out in stationary mode and flow cells to simulate actual operating phase conditions. Based on changes in electrode vibration frequency, the maximum amount of adsorbed analyte and the best conditions for its sorption were determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA