Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362282

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from antibiotics. Hence, there is a need for innovative approaches that are able to counteract these virulence factors, which play a pivotal role, especially in chronic infections. In this context, antimicrobial peptides are emerging drugs showing a broad spectrum of antibacterial activity. Here, we tested the anti-virulence activity of a chionodracine-derived peptide (KHS-Cnd) on five P. aeruginosa clinical isolates from cystic fibrosis patients. We demonstrated that KHS-Cnd impaired biofilm development and caused biofilm disaggregation without affecting bacterial viability in nearly all of the tested strains. Ultrastructural morphological analysis showed that the effect of KHS-Cnd on biofilm could be related to a different compactness of the matrix. KHS-Cnd was also able to reduce adhesion to pulmonary cell lines and to impair the invasion of host cells by P. aeruginosa. A cytotoxic effect of KHS-Cnd was observed only at the highest tested concentration. This study highlights the potential of KHS-Cnd as an anti-biofilm and anti-virulence molecule against P. aeruginosa clinical strains.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Virulência , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Biofilmes , Fatores de Virulência/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Testes de Sensibilidade Microbiana
2.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216297

RESUMO

The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.


Assuntos
Antifúngicos , Candida , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Biofilmes , Candida albicans , Humanos , Larva , Lipopeptídeos/farmacologia , Mamíferos , Testes de Sensibilidade Microbiana
3.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092980

RESUMO

Antimicrobial peptides have been identified as one of the alternatives to the extensive use of common antibiotics as they show a broad spectrum of activity against human pathogens. Among these is Chionodracine (Cnd), a host-defense peptide isolated from the Antarctic icefish Chionodraco hamatus, which belongs to the family of Piscidins. Previously, we demonstrated that Cnd and its analogs display high antimicrobial activity against ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species). Herein, we investigate the interactions with lipid membranes of Cnd and two analogs, Cnd-m3 and Cnd-m3a, showing enhanced potency. Using a combination of Circular Dichroism, fluorescence spectroscopy, and all-atom Molecular Dynamics (MD) simulations, we determined the structural basis for the different activity among these peptides. We show that all peptides are predominantly unstructured in water and fold, preferentially as α-helices, in the presence of lipid vesicles of various compositions. Through a series of MD simulations of 400 ns time scale, we show the effect of mutations on the structure and lipid interactions of Cnd and its analogs. By explaining the structural basis for the activity of these analogs, our findings provide structural templates to design minimalistic peptides for therapeutics.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Sequência de Aminoácidos , Animais , Anisotropia , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dicroísmo Circular , Membranas Artificiais , Simulação de Dinâmica Molecular , Perciformes/metabolismo , Conformação Proteica em alfa-Hélice , Água/química
4.
J Biomol NMR ; 70(3): 133-140, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396770

RESUMO

Paramagnetic relaxation enhancement (PRE) measurements constitute a powerful approach for detecting both permanent and transient protein-protein interactions. Typical PRE experiments require an intrinsic or engineered paramagnetic site on one of the two interacting partners; while a second, diamagnetic binding partner is labeled with stable isotopes (15N or 13C). Multiple paramagnetic labeled centers or reversed labeling schemes are often necessary to obtain sufficient distance restraints to model protein-protein complexes, making this approach time consuming and expensive. Here, we show a new strategy that combines a modified pulse sequence (1HN-Γ2-CCLS) with an asymmetric labeling scheme to enable the detection of both intra- and inter-molecular PREs simultaneously using only one sample preparation. We applied this strategy to the non-covalent dimer of ubiquitin. Our method confirmed the previously identified binding interface for the transient di-ubiquitin complex, and at the same time, unveiled the internal structural dynamics rearrangements of ubiquitin upon interaction. In addition to reducing the cost of sample preparation and speed up PRE measurements, by detecting the intra-molecular PRE this new strategy will make it possible to measure and calibrate inter-molecular distances more accurately for both symmetric and asymmetric protein-protein complexes.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Multimerização Proteica , Coloração e Rotulagem/métodos , Ubiquitina/química , Domínios e Motivos de Interação entre Proteínas , Coloração e Rotulagem/economia
5.
Biochemistry ; 56(32): 4269-4278, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28699734

RESUMO

The antimicrobial peptide GL13K encompasses 13 amino acid residues and has been designed and optimized from the salivary protein BPIFA2 to exhibit potent bacteriocidal and anti-biofilm activity against Gram-negative and Gram-positive bacteria as well as anti-lipopolysaccharide activity in vitro and in vivo. Here, the peptide was analyzed in a variety of membrane environments by circular dichroism spectroscopy and by high-resolution multidimensional solution nuclear magnetic resonance (NMR) spectroscopy. Whereas in the absence of membranes a random coil conformation predominates, the peptide adopts a helical structure from residue 5 to 11 in the presence of dodecylphosphocholine micelles. In contrast, a predominantly ß-sheet structure was observed in the presence of lipid bilayers carrying negatively charged phospholipids. Whereas 15N solid-state NMR spectra are indicative of a partial alignment of the peptide 15N-1H vector along the membrane surface, 2H and 31P solid-state NMR spectra indicate that in this configuration the peptide exhibits pronounced disordering activities on the phospholipid membrane, which is possibly related to antimicrobial action. GL13K, thus, undergoes a number of conformational transitions, including a random coil state in solution, a helical structure upon dilution at the surface of zwitterionic membranes, and ß-sheet conformations at high peptide:lipid ratios.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Ressonância Magnética Nuclear Biomolecular , Proteínas e Peptídeos Salivares/química , Humanos , Estrutura Secundária de Proteína
6.
Biochim Biophys Acta ; 1864(12): 1739-1747, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27592418

RESUMO

Plant defensins constitute the innate immune response against pathogens such as fungi and bacteria. Typical plant defensins are small, basic peptides that possess a characteristic three-dimensional fold stabilized by three or four disulfide bridges. In addition to known defensin genes, the Arabidopsis genome comprises >300 defensin-like genes coding for small cysteine-rich peptides. One of such genes encodes for AtPDFL2.1, a putative antifungal peptide of 55 amino acids, with six cysteine residues in its primary sequence. To understand the functional role of AtPDFL2.1, we carried out antifungal activity assays and determined its high-resolution three-dimensional structure using multidimensional solution NMR spectroscopy. We found that AtPDFL2.1 displays a strong inhibitory effect against Fusarium graminearum (IC50≈4µM). This peptide folds in the canonical cysteine-stabilized αß (CSαß) motif, consisting of one α-helix and one triple-stranded antiparallel ß-sheet stabilized by three disulfide bridges and a hydrophobic cluster of residues within its core where the α-helix packs tightly against the ß-sheets. Nuclear spin relaxation measurements show that the structure of AtPDFL2.1 is essentially rigid, with the L3 loop located between ß-strands 2 and 3 being more flexible and displaying conformational exchange. Interestingly, the dynamic features of loop L3 are conserved among defensins and are probably correlated to the antifungal and receptor binding activities.


Assuntos
Proteínas de Arabidopsis/química , Defensinas/química , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Sequência Conservada , Defensinas/genética , Defensinas/metabolismo , Fusarium/efeitos dos fármacos , Genes de Plantas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática
7.
Biochim Biophys Acta ; 1848(6): 1285-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25749154

RESUMO

Chionodracine (Cnd) is a 22-residue peptide of the piscidin family expressed in the gills of the Chionodraco hamatus as protection from bacterial infections. Here, we report the effects of synthetic Cnd on both Psychrobacter sp. TAD1 and Escherichia coli bacteria, as well as membrane models. We found that Cnd perforates the inner and outer membranes of Psychrobacter sp. TAD1, making discrete pores that cause the cellular content to leak out. Membrane disruption studies using intrinsic and extrinsic fluorescence spectroscopy revealed that Cnd behaves similarly to other piscidins, with comparable membrane partition coefficients. Membrane accessibility assays and structural studies using NMR in detergent micelles show that Cnd adopts a canonical topology of antimicrobial helical peptides, with the hydrophobic face toward the lipid environment and the hydrophilic face toward the bulk solvent. The analysis of Cnd free energy of binding to vesicles with different lipid contents indicates a preference for charged phospholipids and a more marked binding to native E. coli extracts. Taken with previous studies on piscidin-like peptides, we conclude that Cnd first adsorbs to the membrane, and then forms pores together with membrane fragmentation. Since Cnd has only marginal hemolytic activity, it constitutes a good template for developing new antimicrobial agents.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Perciformes/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluoresceínas/metabolismo , Fluorescência , Cinética , Espectroscopia de Ressonância Magnética , Micelas , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Iodeto de Potássio/química , Psychrobacter/efeitos dos fármacos , Temperatura
8.
Peptides ; 182: 171311, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39426570

RESUMO

Antarctic fishes, living in an extreme environment and normally exposed to pathogens, are a promising source of antimicrobial peptides (AMPs). These are emerging as next-generation drugs due to their activity against multidrug resistant (MDR) bacteria. To infect hosts, beyond intrinsic/acquired resistance, MDR species also use virulence factors such as protease secretion. Hence, AMPs targeting virulence factors could represent a novel strategy to counteract the antimicrobial resistance (AMR). In this paper, we focused on a mutant peptide, named KHS-Cnd, that was obtained from the scaffold of the chionodracine (Cnd), a natural peptide identified in the icefish Chionodraco hamatus. We studied different effects caused by the peptide interaction with the cell membrane of two model bacteria, E. coli and B. cereus. First, we investigated its membranolytic activity revealing that the peptide action is more evident on E. coli, with a 69 % uptake of the used dye at 3 µM, whereas for B. cereus we found only a 65 % uptake at 6 µM. Successively, we determined the impact of this lysis on total protein concentration in the medium and an increase was estimated for both bacteria (84 % after 1 h for E. coli and 90 % for B. cereus, respectively). Moreover, we evaluated the changes in the proteolytic activity of the supernatant, that is an important aspect of bacterial resistance, showing that there was a significant reduction for both bacteria, although at higher level in the case of E. coli. The membranolytic activity was evidenced also morphologically with TEM analysis and a different alteration was evidenced for the two bacteria. Moreover, NMR metabolomics analysis showed that peptide induces changes in E. coli and B. cereus extracellular metabolites especially at the higher tested concentrations: this metabolic variation could be used as a fingerprinting of the peptide action on bacteria physiology due to its interaction with cell wall. Finally, we determined the KHS-Cnd cytotoxicity on human primary cell lines to verify its selectivity toward bacterial cell membranes and we found low toxicity until a concentration of 5 µM. Considering that the peptide exerts both membranolytic and anti-virulence activity on E. coli at 1.5 µM, we confirmed the interesting potential of this AMP as a new drug to counteract AMR.

9.
Front Microbiol ; 15: 1447301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171261

RESUMO

Introduction: This study investigated the interaction with membrane mimetic systems (LUVs), bacterial membranes, the CD spectra, and the bactericidal activity of two designed trematocine mutants, named Trem-HK and Trem-HSK. Mutants were constructed from the scaffold of Trematocine (Trem), a natural 22-amino acid AMP from the Antarctic fish Trematomus bernacchii, aiming to increase their positive charge. Methods: The selectivity of the designed AMPs towards bacterial membranes was improved compared to Trematocine, verified by their interaction with different LUVs and their membranolytic activity. Additionally, their α-helical conformation was not influenced by the amino acid substitutions. Our findings revealed a significant enhancement in antibacterial efficacy against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae family) pathogens for both Trem-HK and Trem-HSK. Results: Firstly, we showed that the selectivity of the two new designed AMPs towards bacterial membranes was greatly improved compared to Trematocine, verifying their interaction with different LUVs and their membranolytic activity. We determined that their α-helical conformation was not influenced by the amino acid substitutions. We characterized the tested bacterial collection for resistance traits to different classes of antibiotics. The minimum inhibitory and bactericidal concentration (MIC and MBC) values of the ESKAPE collection were reduced by up to 80% compared to Trematocine. The bactericidal concentrations of Trematocine mutants showed important membranolytic action, evident by scanning electron microscopy, on all tested species. We further evaluated the cytotoxicity and hemolytic activity of the mutants. At 2.5 µM concentration, both mutants demonstrated low cytotoxicity and hemolysis, indicating selectivity towards bacterial cells. However, these effects increased at higher concentrations. Discussion: Assessment of in vivo toxicity using the Galleria mellonella model revealed no adverse effects in larvae treated with both mutants, even at concentrations up to 20 times higher than the lowest MIC observed for Acinetobacter baumannii, suggesting a high potential safety profile for the mutants. This study highlights the significant improvement in antibacterial efficacy achieved by increasing the positive charge of Trem-HK and Trem-HSK. This improvement was reached at the cost of reduced biocompatibility. Further research is necessary to optimize the balance between efficacy and safety for these promising AMPs.

10.
FEBS Lett ; 597(8): 1055-1072, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36892429

RESUMO

The cAMP-dependent protein kinase A (PKA) is the archetypical eukaryotic kinase. The catalytic subunit (PKA-C) structure is highly conserved among the AGC-kinase family. PKA-C is a bilobal enzyme with a dynamic N-lobe, harbouring the Adenosine-5'-triphosphate (ATP) binding site and a more rigid helical C-lobe. The substrate-binding groove resides at the interface of the two lobes. A distinct feature of PKA-C is the positive binding cooperativity between nucleotide and substrate. Several PKA-C mutations lead to the development of adenocarcinomas, myxomas, and other rare forms of liver tumours. Nuclear magnetic resonance (NMR) spectroscopy shows that these mutations disrupt the allosteric communication between the two lobes, causing a drastic decrease in binding cooperativity. The loss of cooperativity correlates with changes in substrate fidelity and reduced kinase affinity for the endogenous protein kinase inhibitor (PKI). The similarity between PKI and the inhibitory sequence of the kinase regulatory subunits suggests that the overall mechanism of regulation of the kinase may be disrupted. We surmise that a reduced or obliterated cooperativity may constitute a common trait for both orthosteric and allosteric mutations of PKA-C that may lead to dysregulation and disease.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Nucleotídeos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espectroscopia de Ressonância Magnética , Sítios de Ligação , Domínio Catalítico , Trifosfato de Adenosina/química , Regulação Alostérica
11.
Biochim Biophys Acta ; 1808(1): 34-40, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20719234

RESUMO

Distinctin is a 47-residue antimicrobial peptide, which interacts with negatively charged membranes and is active against Gram-positive and Gram-negative bacteria. Its primary sequence comprises two linear chains of 22 (chain 1) and 25 (chain 2) residues, linked by a disulfide bridge between Cys19 of chain 1 and Cys23 of chain 2. Unlike other antimicrobial peptides, distinctin in the absence of the lipid membrane has a well-defined three-dimensional structure, which protects it from protease degradation. Here, we used static solid-state NMR spectroscopy in mechanically aligned lipid bilayers (charged or zwitterionic) to study the topology of distinctin in lipid bilayers. We found that this heterodimeric peptide adopts an ordered conformation absorbed on the surface of the membrane, with the long helix (chain 2), approximately parallel to the lipid bilayer (~5° from the membrane plane) and the short helix (chain 1) forming a ~24° angle with respect to the bilayer plane. Since the peptide does not disrupt the macroscopic alignment of charged or zwitterionic lipid bilayers at lipid-to-protein molar ratio of 50:1, it is possible that higher peptide concentrations might be needed for pore formation, or alternatively, distinctin elicits its cell disruption action by another mechanism.


Assuntos
Proteínas de Anfíbios/química , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Bactérias/metabolismo , Bioquímica/métodos , Biofísica/métodos , Cisteína/química , Dissulfetos/química , Testes de Sensibilidade Microbiana , Conformação Molecular , Temperatura
12.
J Biol Inorg Chem ; 16(8): 1197-204, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21735272

RESUMO

Metal centers have been widely used to nucleate secondary structures in linear peptides. However, very few examples have been reported for peptide/organometal complexes. Here, we illustrate the use of organotin compounds as nucleation centers for secondary structures of linear peptide inhibitors of α-amylase. Specifically, we utilized methyl-substituted tin compounds to template short type I ß-turns similar to the binding loop of tendamistat, the natural inhibitor of the enzyme, which are able to bind and inhibit α-amylase. We show that enzyme activity is inhibited by neither the unstructured peptide nor the organotin compounds, but rather the peptide/organotin complex, which inhibits the enzyme with K (i) ~ 0.5 µM. The results delineate a strategy to use organometallic compounds to drive the active conformation in small linear peptides.


Assuntos
Modelos Moleculares , Compostos Orgânicos de Estanho/química , Peptídeos/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Conformação Molecular , Neuropeptídeos/química , Peptídeos/síntese química , Conformação Proteica
13.
Commun Biol ; 4(1): 321, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692454

RESUMO

An aberrant fusion of the DNAJB1 and PRKACA genes generates a chimeric protein kinase (PKA-CDNAJB1) in which the J-domain of the heat shock protein 40 is fused to the catalytic α subunit of cAMP-dependent protein kinase A (PKA-C). Deceivingly, this chimeric construct appears to be fully functional, as it phosphorylates canonical substrates, forms holoenzymes, responds to cAMP activation, and recognizes the endogenous inhibitor PKI. Nonetheless, PKA-CDNAJB1 has been recognized as the primary driver of fibrolamellar hepatocellular carcinoma and is implicated in other neoplasms for which the molecular mechanisms remain elusive. Here we determined the chimera's allosteric response to nucleotide and pseudo-substrate binding. We found that the fusion of the dynamic J-domain to PKA-C disrupts the internal allosteric network, causing dramatic attenuation of the nucleotide/PKI binding cooperativity. Our findings suggest that the reduced allosteric cooperativity exhibited by PKA-CDNAJB1 alters specific recognitions and interactions between substrates and regulatory partners contributing to dysregulation.


Assuntos
Trifosfato de Adenosina/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Fragmentos de Peptídeos/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Ligantes , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/genética , Fosforilação , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo
14.
Antibiotics (Basel) ; 9(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041161

RESUMO

Antimicrobial peptides (AMPs) are short peptides active against a wide range of pathogens and, therefore, they are considered a useful alternative to conventional antibiotics. We have identified a new AMP in a transcriptome derived from the Antarctic fish Trematomus bernacchii. This peptide, named Trematocine, has been investigated for its expression both at the basal level and after in vivo immunization with an endemic Antarctic bacterium (Psychrobacter sp. TAD1). Results agree with the expected behavior of a fish innate immune component, therefore we decided to synthesize the putative mature sequence of Trematocine to determine the structure, the interaction with biological membranes, and the biological activity. We showed that Trematocine folds into a α-helical structure in the presence of both zwitterionic and anionic charged vesicles. We demonstrated that Trematocine has a highly specific interaction with anionic charged vesicles and that it can kill Gram-negative bacteria, possibly via a carpet like mechanism. Moreover, Trematocine showed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against selected Gram-positive and Gram-negative bacteria similar to other AMPs isolated from Antarctic fishes. The peptide is a possible candidate for a new drug as it does not show any haemolytic or cytotoxic activity against mammalian cells at the concentration needed to kill the tested bacteria.

15.
Elife ; 92020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338601

RESUMO

In the nucleus, the spatiotemporal regulation of the catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is orchestrated by an intrinsically disordered protein kinase inhibitor, PKI, which recruits the CRM1/RanGTP nuclear exporting complex. How the PKA-C/PKI complex assembles and recognizes CRM1/RanGTP is not well understood. Using NMR, SAXS, fluorescence, metadynamics, and Markov model analysis, we determined the multi-state recognition pathway for PKI. After a fast binding step in which PKA-C selects PKI's most competent conformations, PKI folds upon binding through a slow conformational rearrangement within the enzyme's binding pocket. The high-affinity and pseudo-substrate regions of PKI become more structured and the transient interactions with the kinase augment the helical content of the nuclear export sequence, which is then poised to recruit the CRM1/RanGTP complex for nuclear translocation. The multistate binding mechanism featured by PKA-C/PKI complex represents a paradigm on how disordered, ancillary proteins (or protein domains) are able to operate multiple functions such as inhibiting the kinase while recruiting other regulatory proteins for nuclear export.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Citoplasma , Escherichia coli , Peptídeos e Proteínas de Sinalização Intracelular/genética , Carioferinas/genética , Carioferinas/metabolismo , Espectroscopia de Ressonância Magnética , Cadeias de Markov , Camundongos , Coelhos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Exportina 1
16.
J Biol Inorg Chem ; 14(8): 1219-25, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19626349

RESUMO

We investigated the time dependence of the degradation of three alkyltin derivatives by a nine amino acid linear peptide (I(1)LGCWCYLR(9)) containing a CXC motif derived from the primary sequence of stannin, a membrane protein involved in alkyltin toxicity. We monitored the reaction kinetics using the intrinsic fluorescence of the tryptophan residue in position 5 of the peptide and found that all of the alkyltins analyzed are progressively degraded to dialkyl derivatives, following a pseudoenzymatic reaction mechanism. The end point of the reactions is the formation of a covalent complex between the disubstituted alkyltin and the peptide cysteines. These data agree with the speciation profiles proposed for polysubstituted alkyltins in the environment and reveal a possible biotic degradation pathway for these toxic compounds.


Assuntos
Compostos Orgânicos de Estanho/química , Peptídeos/química , Estanho/química , Tolueno/análogos & derivados , Animais , Remoção de Radical Alquila , Humanos , Estrutura Molecular , Neuropeptídeos/química , Neuropeptídeos/genética , Compostos Orgânicos de Estanho/toxicidade , Peptídeos/genética , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Tolueno/química
17.
J Phys Chem B ; 123(13): 2780-2791, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30888824

RESUMO

Tyrosine-tryptophan (YW) dyads are ubiquitous structural motifs in enzymes and play roles in proton-coupled electron transfer (PCET) and, possibly, protection from oxidative stress. Here, we describe the function of YW dyads in de novo designed 18-mer, ß hairpins. In Peptide M, a YW dyad is formed between W14 and Y5. A UV hypochromic effect and an excitonic Cotton signal are observed, in addition to singlet, excited state (W*) and fluorescence emission spectral shifts. In a second Peptide, Peptide MW, a Y5-W13 dyad is formed diagonally across the strand and distorts the backbone. On a picosecond timescale, the W* excited-state decay kinetics are similar in all peptides but are accelerated relative to amino acids in solution. In Peptide MW, the W* spectrum is consistent with increased conformational flexibility. In Peptide M and MW, the electron paramagnetic resonance spectra obtained after UV photolysis are characteristic of tyrosine and tryptophan radicals at 160 K. Notably, at pH 9, the radical photolysis yield is decreased in Peptide M and MW, compared to that in a tyrosine and tryptophan mixture. This protective effect is not observed at pH 11 and is not observed in peptides containing a tryptophan-histidine dyad or tryptophan alone. The YW dyad protective effect is attributed to an increase in the radical recombination rate. This increase in rate can be facilitated by hydrogen-bonding interactions, which lower the barrier for the PCET reaction at pH 9. These results suggest that the YW dyad structural motif promotes radical quenching under conditions of reactive oxygen stress.


Assuntos
Materiais Biomiméticos , Triptofano , Tirosina , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Concentração de Íons de Hidrogênio , Conformação Proteica , Triptofano/química , Triptofano/metabolismo , Tirosina/química , Tirosina/metabolismo
18.
Dev Comp Immunol ; 96: 9-17, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30790604

RESUMO

The increasing resistance to conventional antibiotics is an urgent problem that can be addressed by the discovery of new antimicrobial drugs such as antimicrobial peptides (AMPs). AMPs are components of innate immune system of eukaryotes and are not prone to the conventional mechanisms that are responsible of drug resistance. Fish are an important source of AMPs and, recently, we have isolated and characterized a new 22 amino acid residues peptide, the chionodracine (Cnd), from the Antarctic icefish Chionodraco hamatus. In this paper we focused on a new Cnd-derived mutant peptide, namely Cnd-m3a, designed to improve the selectivity against prokaryotic cells and the antimicrobial activity against human pathogens of the initial Cnd template. Cnd-m3a was used for immunization of rabbits, which gave rise to a polyclonal antibody able to detect the peptide. The interaction kinetic of Cnd-m3a with the Antarctic bacterium Psychrobacter sp. (TAD1) was imaged using a transmission electron microscopy (TEM) immunogold method. Initially the peptide was associated with the plasma membrane, but after 180 min of incubation, it was found in the cytoplasm interacting with a DNA target inside the bacterial cells. Using fluorescent probes we showed that the newly designed mutant can create pores in the outer membrane of the bacteria E. coli and Psychrobacter sp. (TAD1), confirming the results of TEM analysis. Moreover, in vitro assays demonstrated that Cnd-m3a is able to bind lipid vesicles of different compositions with a preference toward negatively charged ones, which mimics the prokaryotic cell. The Cnd-m3a peptide showed quite low hemolytic activity and weak cytotoxic effect against human primary and tumor cell lines, but high antimicrobial activity against selected Gram - human pathogens. These results highlighted the high potential of the Cnd-m3a peptide as a starting point for developing a new human therapeutic agent.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Peixes/farmacologia , Psychrobacter/efeitos dos fármacos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Linhagem Celular Tumoral , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Citoplasma/efeitos dos fármacos , Citoplasma/ultraestrutura , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/fisiologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Mutação , Psychrobacter/fisiologia , Coelhos , Testes de Toxicidade
19.
Biochemistry ; 47(20): 5565-72, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18439024

RESUMO

LL-37 is the only cathelicidin-derived polypeptide found in humans. Its eclectic function makes this peptide one of the most intriguing chemical defense agents, with crucial roles in moderating inflammation, promoting wound healing, and boosting the human immune system. LL-37 kills both prokaryotic and eukaryotic cells through physical interaction with cell membranes. In order to study its active conformation in membranes, we have reconstituted LL-37 into dodecylphosphocholine (DPC) micelles and determined its three-dimensional structure. We found that, under our experimental conditions, this peptide adopts a helix-break-helix conformation. Both the N- and C-termini are unstructured and solvent exposed. The N-terminal helical domain is more dynamic, while the C-terminal helix is more solvent protected and structured (high density of NOEs, slow H/D exchange). When it interacts with DPC, LL-37 is adsorbed on the surface of the micelle with the hydrophilic face exposed to the water phase and the hydrophobic face buried in the micelle hydrocarbon region. The break between the helices is positioned at K12 and is probably stabilized by a hydrophobic cluster formed by I13, F17, and I20 in addition to a salt bridge between K12 and E16. These results support the proposed nonpore carpet-like mechanism of action, in agreement with the solid-state NMR studies, and pave the way for understanding the function of the mature LL-37 at the atomic level.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Micelas , Fosforilcolina/análogos & derivados , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilcolina/química , Estrutura Terciária de Proteína , Catelicidinas
20.
RSC Adv ; 8(72): 41331-41346, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559296

RESUMO

Starting from the sequence of the amphipathic α-helix of chionodracine (Cnd, 22 amino acids), we designed a series of mutants to increase Cnd's antimicrobial activity and selectivity toward prokaryotic cells and drug-resistant bacterial pathogens. We characterized these new Cnd-derived peptides using fluorescence, CD spectroscopy, and transmission electron microscopy, studying their interactions with synthetic lipid vesicles and assaying their biological function against E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter sp. Upon interaction with model membranes, these new peptides with higher net charges and hydrophobic moments adopt a helical conformation similar to Cnd. Notably, they display a low cytotoxic activity against human primary cells, a low hemolytic activity, but a significantly high bactericidal activity against drug-resistant bacterial pathogens. The low values of micromolar minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) make these Cnd-derived peptides potential templates to develop antimicrobial agents against drug-resistant human pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA