Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(10): e2117781119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238630

RESUMO

SignificanceThe mature capsids of HIV-1 are transiently stable complexes that self-assemble around the viral genome during maturation, and uncoat to release preintegration complexes that archive a double-stranded DNA copy of the virus in the host cell genome. However, a detailed view of how HIV cores rupture remains lacking. Here, we elucidate the physical properties involved in capsid rupture using a combination of large-scale all-atom molecular dynamics simulations and cryo-electron tomography. We find that intrinsic strain on the capsid forms highly correlated patterns along the capsid surface, along which cracks propagate. Capsid rigidity also increases with high strain. Our findings provide fundamental insight into viral capsid uncoating.


Assuntos
Capsídeo/fisiologia , HIV-1/fisiologia , Desenvelopamento do Vírus , Capsídeo/química , Proteínas do Capsídeo/química , Linhagem Celular , Tomografia com Microscopia Eletrônica/métodos , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica
2.
PLoS Pathog ; 18(2): e1009202, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130321

RESUMO

Zinc-finger antiviral protein (ZAP), also known as poly(ADP-ribose) polymerase 13 (PARP13), is an antiviral factor that selectively targets viral RNA for degradation. ZAP is active against both DNA and RNA viruses, including important human pathogens such as hepatitis B virus and type 1 human immunodeficiency virus (HIV-1). ZAP selectively binds CpG dinucleotides through its N-terminal RNA-binding domain, which consists of four zinc fingers. ZAP also contains a central region that consists of a fifth zinc finger and two WWE domains. Through structural and biochemical studies, we found that the fifth zinc finger and tandem WWEs of ZAP combine into a single integrated domain that binds to poly(ADP-ribose) (PAR), a cellular polynucleotide. PAR binding is mediated by the second WWE module of ZAP and likely involves specific recognition of an adenosine diphosphate-containing unit of PAR. Mutation of the PAR binding site in ZAP abrogates the interaction in vitro and diminishes ZAP activity against a CpG-rich HIV-1 reporter virus and murine leukemia virus. In cells, PAR facilitates formation of non-membranous sub-cellular compartments such as DNA repair foci, spindle poles and cytosolic RNA stress granules. Our results suggest that ZAP-mediated viral mRNA degradation is facilitated by PAR, and provides a biophysical rationale for the reported association of ZAP with RNA stress granules.


Assuntos
HIV-1/metabolismo , Vírus da Leucemia Murina/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Dedos de Zinco , Animais , Antivirais/farmacologia , Cristalografia por Raios X , Células HEK293 , Células HeLa , Humanos , Camundongos , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Estabilidade de RNA , RNA Viral , Proteínas de Ligação a RNA/farmacologia
3.
Cell ; 137(7): 1282-92, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19523676

RESUMO

The mature capsids of HIV and other retroviruses organize and package the viral genome and its associated enzymes for delivery into host cells. The HIV capsid is a fullerene cone: a variably curved, closed shell composed of approximately 250 hexamers and exactly 12 pentamers of the viral CA protein. We devised methods for isolating soluble, assembly-competent CA hexamers and derived four crystallographically independent models that define the structure of this capsid assembly unit at atomic resolution. A ring of six CA N-terminal domains form an apparently rigid core, surrounded by an outer ring of C-terminal domains. Mobility of the outer ring appears to be an underlying mechanism for generating the variably curved lattice in authentic capsids. Hexamer-stabilizing interfaces are highly hydrated, and this property may be key to the formation of quasi-equivalent interactions within hexamers and pentamers. The structures also clarify the molecular basis for capsid assembly inhibition and should facilitate structure-based drug design strategies.


Assuntos
Proteínas do Capsídeo/química , HIV-1/química , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , HIV-1/metabolismo , Modelos Moleculares , Polímeros/metabolismo , Estrutura Terciária de Proteína
4.
Nature ; 563(7731): E22, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158708

RESUMO

In this Letter, the Protein Data Bank (PDB) accessions were incorrectly listed as '6BH5, 6BHT and 6BHS' instead of '6BHR, 6BHT and 6BHS'; this has been corrected online.

5.
Nature ; 560(7719): 509-512, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069050

RESUMO

A short, 14-amino-acid segment called SP1, located in the Gag structural protein1, has a critical role during the formation of the HIV-1 virus particle. During virus assembly, the SP1 peptide and seven preceding residues fold into a six-helix bundle, which holds together the Gag hexamer and facilitates the formation of a curved immature hexagonal lattice underneath the viral membrane2,3. Upon completion of assembly and budding, proteolytic cleavage of Gag leads to virus maturation, in which the immature lattice is broken down; the liberated CA domain of Gag then re-assembles into the mature conical capsid that encloses the viral genome and associated enzymes. Folding and proteolysis of the six-helix bundle are crucial rate-limiting steps of both Gag assembly and disassembly, and the six-helix bundle is an established target of HIV-1 inhibitors4,5. Here, using a combination of structural and functional analyses, we show that inositol hexakisphosphate (InsP6, also known as IP6) facilitates the formation of the six-helix bundle and assembly of the immature HIV-1 Gag lattice. IP6 makes ionic contacts with two rings of lysine residues at the centre of the Gag hexamer. Proteolytic cleavage then unmasks an alternative binding site, where IP6 interaction promotes the assembly of the mature capsid lattice. These studies identify IP6 as a naturally occurring small molecule that promotes both assembly and maturation of HIV-1.


Assuntos
HIV-1/metabolismo , Fosfatos de Inositol/metabolismo , Vírion/metabolismo , Montagem de Vírus , Arginina/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Cristalografia por Raios X , HIV-1/química , HIV-1/genética , Técnicas In Vitro , Lisina/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Vírion/química , Vírion/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
6.
Proteins ; 90(1): 309-313, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34357660

RESUMO

The Gag proteins of retroviruses play an essential role in virus particle assembly by forming a protein shell or capsid and thus generating the virion compartment. A variety of human proteins have now been identified with structural similarity to one or more of the major Gag domains. These human proteins are thought to have been evolved or "domesticated" from ancient integrations due to retroviral infections or retrotransposons. Here, we report that X-ray crystal structures of stably folded domains of MOAP1 (modulator of apoptosis 1) and PEG10 (paternally expressed gene 10) are highly similar to the C-terminal capsid (CA) domains of cognate Gag proteins. The structures confirm classification of MOAP1 and PEG10 as domesticated Gags, and suggest that these proteins may have preserved some of the key interactions that facilitated assembly of their ancestral Gags into capsids.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Proteínas de Ligação a DNA , Produtos do Gene gag , Proteínas de Ligação a RNA , Retroelementos/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos/genética , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Sequência Conservada/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Produtos do Gene gag/química , Produtos do Gene gag/genética , Humanos , Modelos Moleculares , Domínios Proteicos/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Retroviridae/genética , Infecções por Retroviridae
7.
J Virol ; 95(19): e0061521, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287037

RESUMO

The transition from an immature to a fully infectious mature retrovirus particle is associated with molecular switches that trigger dramatic conformational changes in the structure of the Gag proteins. A dominant maturation switch that stabilizes the immature capsid (CA) lattice is located downstream of the CA protein in many retroviral Gags. The HIV-1 Gag protein contains a stretch of 5 amino acid residues termed the "clasp motif," important for the organization of the hexameric subunits that provide stability to the overall immature HIV-1 shell. Sequence alignment of the CA C-terminal domains (CTDs) of HIV-1 and Mason-Pfizer monkey virus (M-PMV) highlighted a spacer-like domain in M-PMV that may provide a comparable function. The importance of the sequences spanning the CA-nucleocapsid (NC) cleavage has been demonstrated by mutagenesis, but the specific requirements for the clasp motif in several steps of M-PMV particle assembly and maturation have not been determined in detail. In the present study, we report an examination of the role of the clasp motif in the M-PMV life cycle. We generated a series of M-PMV Gag mutants and assayed for assembly of the recombinant proteins in vitro and for the assembly, maturation, release, genomic RNA packaging, and infectivity of the mutant viruses in vivo. The mutants revealed major defects in virion assembly and release in HEK 293T and HeLa cells and even larger defects in infectivity. Our data identify the clasp motif as a fundamental contributor to CA-CTD interactions necessary for efficient retroviral infection. IMPORTANCE The C-terminal domain of the capsid protein of many retroviruses has been shown to be critical for virion assembly and maturation, but the functions of this region of M-PMV are uncertain. We show that a short "clasp" motif in the capsid domain of the M-PMV Gag protein plays a key role in M-PMV virion assembly, genome packaging, and infectivity.


Assuntos
Proteínas do Capsídeo/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Vírus dos Macacos de Mason-Pfizer/fisiologia , Vírion/metabolismo , Montagem de Vírus , Motivos de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Produtos do Gene gag/genética , Genoma Viral , Células HEK293 , Células HeLa , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Domínios Proteicos , RNA Viral/genética , RNA Viral/metabolismo , Empacotamento do Genoma Viral
8.
J Biol Chem ; 295(45): 15183-15195, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32788212

RESUMO

To enter a cell and establish infection, HIV must first fuse its lipid envelope with the host cell plasma membrane. Whereas the process of HIV membrane fusion can be tracked by fluorescence microscopy, the 3D configuration of proteins and lipids at intermediate steps can only be resolved with cryo-electron tomography (cryoET). However, cryoET of whole cells is technically difficult. To overcome this problem, we have adapted giant plasma membrane vesicles (or blebs) from native cell membranes expressing appropriate receptors as targets for fusion with HIV envelope glycoprotein-expressing pseudovirus particles with and without Serinc host restriction factors. The fusion behavior of these particles was probed by TIRF microscopy on bleb-derived supported membranes. Timed snapshots of fusion of the same particles with blebs were examined by cryo-ET. The combination of these methods allowed us to characterize the structures of various intermediates on the fusion pathway and showed that when Serinc3 or Serinc5 (but not Serinc2) were present, later fusion products were more prevalent, suggesting that Serinc3/5 act at multiple steps to prevent progression to full fusion. In addition, the antifungal amphotericin B reversed Serinc restriction, presumably by intercalation into the fusing membranes. Our results provide a highly detailed view of Serinc restriction of HIV-cell membrane fusion and thus extend current structural and functional information on Serinc as a lipid-binding protein.


Assuntos
Membrana Celular/metabolismo , Microscopia Crioeletrônica , HIV-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Fusão de Membrana , Microscopia de Fluorescência , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
9.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801870

RESUMO

The assembly of an orthoretrovirus such as HIV-1 requires the coordinated functioning of multiple biochemical activities of the viral Gag protein. These activities include membrane targeting, lattice formation, packaging of the RNA genome, and recruitment of cellular cofactors that modulate assembly. In most previous studies, these Gag activities have been investigated individually, which provided somewhat limited insight into how they functionally integrate during the assembly process. Here, we report the development of a biochemical reconstitution system that allowed us to investigate how Gag lattice formation, RNA binding, and the assembly cofactor inositol hexakisphosphate (IP6) synergize to generate immature virus particles in vitro The results identify an important rate-limiting step in assembly and reveal new insights into how RNA and IP6 promote immature Gag lattice formation. The immature virus-like particles can be converted into mature capsid-like particles by the simple addition of viral protease, suggesting that it is possible in principle to fully biochemically reconstitute the sequential processes of HIV-1 assembly and maturation from purified components.IMPORTANCE Assembly and maturation are essential steps in the replication of orthoretroviruses such as HIV-1 and are proven therapeutic targets. These processes require the coordinated functioning of the viral Gag protein's multiple biochemical activities. We describe here the development of an experimental system that allows an integrative analysis of how Gag's multiple functionalities cooperate to generate a retrovirus particle. Our current studies help to illuminate how Gag synergizes the formation of the virus compartment with RNA binding and how these activities are modulated by the small molecule IP6. Further development and use of this system should lead to a more comprehensive understanding of the molecular mechanisms of HIV-1 assembly and maturation and may provide new insights for the development of antiretroviral drugs.


Assuntos
HIV-1/genética , HIV-1/fisiologia , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Capsídeo/metabolismo , Humanos , Microscopia Eletrônica , Modelos Moleculares , Ácido Fítico , Vírion/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
10.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115869

RESUMO

The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral ribonucleoprotein complex (vRNP) consisting of a dimeric viral genome and associated proteins, together constituting the viral core. Upon entry into target cells, the viral core undergoes a process termed uncoating, during which CA molecules are shed from the lattice. Although the timing and degree of uncoating are important for reverse transcription and integration, the molecular basis of this phenomenon remains unclear. Using complementary approaches, we assessed the impact of core destabilization on the intrinsic stability of the CA lattice in vitro and fates of viral core components in infected cells. We found that substitutions in CA can impact the intrinsic stability of the CA lattice in vitro in the absence of vRNPs, which mirrored findings from an assessment of CA stability in virions. Altering CA stability tended to increase the propensity to form morphologically aberrant particles, in which the vRNPs were mislocalized between the CA lattice and the viral lipid envelope. Importantly, destabilization of the CA lattice led to premature dissociation of CA from vRNPs in target cells, which was accompanied by proteasomal-independent losses of the viral genome and integrase enzyme. Overall, our studies show that the CA lattice protects the vRNP from untimely degradation in target cells and provide the mechanistic basis of how CA stability influences reverse transcription.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral RNA genome and the associated viral enzymes and proteins, together constituting the viral core. Upon infection of a new cell, viral cores are released into the cytoplasm where they undergo a process termed "uncoating," i.e., shedding of CA molecules from the conical lattice. Although proper and timely uncoating has been shown to be important for reverse transcription, the molecular mechanisms that link these two events remain poorly understood. In this study, we show that destabilization of the CA lattice leads to premature dissociation of CA from viral cores, which exposes the viral genome and the integrase enzyme for degradation in target cells. Thus, our studies demonstrate that the CA lattice protects the viral ribonucleoprotein complexes from untimely degradation in target cells and provide the first causal link between how CA stability affects reverse transcription.


Assuntos
Capsídeo/metabolismo , Genoma Viral , Integrase de HIV/metabolismo , HIV-1/fisiologia , Desenvelopamento do Vírus , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Cricetinae , Humanos , Mutação , RNA Viral/metabolismo , Transcrição Reversa , Proteínas do Core Viral/metabolismo , Vírion/genética , Vírion/metabolismo
11.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578292

RESUMO

Interferons (IFNs) induce the expression of interferon-stimulated genes (ISGs), many of which are responsible for the cellular antiviral state in which the replication of numerous viruses is blocked. How the majority of individual ISGs inhibit the replication of particular viruses is unknown. We conducted a loss-of-function screen to identify genes required for the activity of alpha interferon (IFN-α) against vesicular stomatitis virus, Indiana serotype (VSVIND), a prototype negative-strand RNA virus. Our screen revealed that TRIM69, a member of the tripartite motif (TRIM) family of proteins, is a VSVIND inhibitor. TRIM69 potently inhibited VSVIND replication through a previously undescribed transcriptional inhibition mechanism. Specifically, TRIM69 physically associates with the VSVIND phosphoprotein (P), requiring a specific peptide target sequence encoded therein. P is a cofactor for the viral polymerase and is required for viral RNA synthesis, as well as the assembly of replication compartments. By targeting P, TRIM69 inhibits pioneer transcription of the incoming virion-associated minus-strand RNA, thereby preventing the synthesis of viral mRNAs, and consequently impedes all downstream events in the VSVIND replication cycle. Unlike some TRIM proteins, TRIM69 does not inhibit viral replication by inducing degradation of target viral proteins. Rather, higher-order TRIM69 multimerization is required for its antiviral activity, suggesting that TRIM69 functions by sequestration or anatomical disruption of the viral machinery required for VSVIND RNA synthesis.IMPORTANCE Interferons are important antiviral cytokines that work by inducing hundreds of host genes whose products inhibit the replication of many viruses. While the antiviral activity of interferon has long been known, the identities and mechanisms of action of most interferon-induced antiviral proteins remain to be discovered. We identified gene products that are important for the antiviral activity of interferon against vesicular stomatitis virus (VSV), a model virus that whose genome consists of a single RNA molecule with negative-sense polarity. We found that a particular antiviral protein, TRIM69, functions by a previously undescribed molecular mechanism. Specifically, TRIM69 interacts with and inhibits the function of a particular phosphoprotein (P) component of the viral transcription machinery, preventing the synthesis of viral messenger RNAs.


Assuntos
Interferon-alfa/farmacologia , Proteínas com Motivo Tripartido/antagonistas & inibidores , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Vesiculovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Linhagem Celular , Citocinas/farmacologia , Humanos , Modelos Moleculares , Fosfoproteínas/genética , Conformação Proteica , Domínios Proteicos , RNA Mensageiro/metabolismo , RNA Viral/biossíntese , Proteínas com Motivo Tripartido/química , Ubiquitina-Proteína Ligases/química , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus/genética , Proteínas Virais
12.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997211

RESUMO

Human immunodeficiency virus type 1 (HIV-1) displays the unique ability to infect nondividing cells. The capsid of HIV-1 is the viral determinant for viral nuclear import. To understand the cellular factors involved in the ability of HIV-1 to infect nondividing cells, we sought to find capsid mutations that allow the virus to infect dividing but not nondividing cells. Because the interaction of capsid with the nucleoporin protein 153 (Nup153) is important for nuclear import of HIV-1, we solved new crystal structures of hexameric HIV-1 capsid in complex with a Nup153-derived peptide containing a phenylalanine-glycine repeat (FG repeat), which we used to guide structure-based mutagenesis of the capsid-binding interface. HIV-1 viruses with mutations in these capsid residues were tested for their ability to infect dividing and nondividing cells. HIV-1 viruses with capsid N57 substitutions infected dividing but not nondividing cells. Interestingly, HIV-1 viruses with N57 mutations underwent reverse transcription but not nuclear translocation. The mutant capsids also lost the ability to interact with Nup153 and CPSF6. The use of small molecules PF74 and BI-2 prevented the interaction of FG-containing nucleoporins (Nups), such as Nup153, with the HIV-1 core. Analysis of integration sites in HIV-1 viruses with N57 mutations revealed diminished integration into transcriptionally active genes in a manner resembling that of HIV-1 in CPSF6 knockout cells or that of HIV-1-N74D. The integration pattern of the N57 mutant HIV-1 can be explained by loss of capsid interaction with CPSF6, whereas capsid interaction with Nup153 is required for HIV-1 to infect nondividing cells. Additionally, the observed viral integration profiles suggested that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.IMPORTANCE One of the key advantages that distinguish lentiviruses, such as HIV-1, from all other retroviruses is its ability to infect nondividing cells. Interaction of the HIV-1 capsid with Nup153 and CPSF6 is important for nuclear entry and integration; however, the contribution of each of these proteins to nuclear import and integration is not clear. Using genetics, we demonstrated that these proteins contribute to different processes: Nup153 is essential for the HIV-1 nuclear import in nondividing cells, and CPSF6 is important for HIV-1 integration. In addition, nuclear factors such as CPSF6 and the state of the chromatin are known to be important for integration site selection; nevertheless, the preferential determinant influencing integration site selection is not known. This work demonstrates that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.


Assuntos
Capsídeo/metabolismo , Divisão Celular , HIV-1/metabolismo , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , HIV-1/genética , Humanos , Poro Nuclear/genética , Poro Nuclear/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
13.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187540

RESUMO

Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity (KD of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity (KD of ∼10 µM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition.IMPORTANCE Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly through its cyclophilin A domain and therefore was thought to act independently of higher-order assembly. Here, we show that TRIMCyp shares the assembly properties of TRIM5α and that both forms of TRIM5 use the same mechanism of hexagonal lattice formation to promote viral recognition and restriction.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , HIV-1/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Fatores de Restrição Antivirais , Aotidae , Proteínas do Capsídeo/ultraestrutura , Proteínas de Transporte/genética , HIV-1/metabolismo , Células HeLa , Humanos , Macaca mulatta , Domínios Proteicos , Multimerização Proteica , Proteínas/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
PLoS Pathog ; 13(10): e1006686, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29040325

RESUMO

Restriction factors are important components of intrinsic cellular defense mechanisms against viral pathogens. TRIM5α is a restriction factor that intercepts the incoming capsid cores of retroviruses such as HIV and provides an effective species-specific barrier to retroviral infection. The TRIM5α SPRY domain directly binds the capsid with only very weak, millimolar-level affinity, and productive capsid recognition therefore requires both TRIM5α dimerization and assembly of the dimers into a multivalent hexagonal lattice to promote avid binding. Here, we explore the important unresolved question of whether the SPRY domains are flexibly linked to the TRIM lattice or more precisely positioned to maximize avidity. Biochemical and biophysical experiments indicate that the linker segment connecting the SPRY domain to the coiled-coil domain adopts an α-helical fold, and that this helical portion mediates interactions between the two domains. Targeted mutations were generated to disrupt the putative packing interface without affecting dimerization or higher-order assembly, and we identified mutant proteins that were nevertheless deficient in capsid binding in vitro and restriction activity in cells. Our studies therefore support a model wherein substantial avidity gains during assembly-mediated capsid recognition by TRIM5α come in part from tailored spacing of tethered recognition domains.


Assuntos
Capsídeo/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Retroviridae/imunologia , Animais , Fatores de Restrição Antivirais , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
15.
Proteins ; 85(10): 1957-1961, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28681414

RESUMO

Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2-ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.


Assuntos
Proteínas de Ligação ao GTP/química , Conformação Proteica , Proteínas com Motivo Tripartido/química , Ubiquitina-Proteína Ligases/química , Cristalografia por Raios X , Dimerização , Proteínas de Ligação ao GTP/metabolismo , Humanos , Relação Estrutura-Atividade , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Nature ; 469(7330): 424-7, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21248851

RESUMO

The mature capsids of human immunodeficiency virus type 1 (HIV-1) and other retroviruses are fullerene shells, composed of the viral CA protein, that enclose the viral genome and facilitate its delivery into new host cells. Retroviral CA proteins contain independently folded amino (N)- and carboxy (C)-terminal domains (NTD and CTD) that are connected by a flexible linker. The NTD forms either hexameric or pentameric rings, whereas the CTD forms symmetric homodimers that connect the rings into a hexagonal lattice. We previously used a disulphide crosslinking strategy to enable isolation and crystallization of soluble HIV-1 CA hexamers. Here we use the same approach to solve the X-ray structure of the HIV-1 CA pentamer at 2.5 Å resolution. Two mutant CA proteins with engineered disulphides at different positions (P17C/T19C and N21C/A22C) converged onto the same quaternary structure, indicating that the disulphide-crosslinked proteins recapitulate the structure of the native pentamer. Assembly of the quasi-equivalent hexamers and pentamers requires remarkably subtle rearrangements in subunit interactions, and appears to be controlled by an electrostatic switch that favours hexamers over pentamers. This study completes the gallery of substructures describing the components of the HIV-1 capsid and enables atomic-level modelling of the complete capsid. Rigid-body rotations around two assembly interfaces appear sufficient to generate the full range of continuously varying lattice curvature in the fullerene cone.


Assuntos
Proteínas do Capsídeo/química , HIV-1/química , Cristalização , Cristalografia por Raios X , Dissulfetos/química , Fulerenos/química , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Rotação , Eletricidade Estática
17.
Proc Natl Acad Sci U S A ; 111(7): 2494-9, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550273

RESUMO

Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication.


Assuntos
Evolução Molecular , Modelos Moleculares , Conformação Proteica , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Bases , Cristalografia por Raios X , Dimerização , Fluorometria , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Corantes de Rosanilina , Análise de Sequência de DNA , Fatores de Transcrição/química , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/química , Ultracentrifugação
18.
Proc Natl Acad Sci U S A ; 111(52): 18625-30, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25518861

RESUMO

Upon infection of susceptible cells by HIV-1, the conical capsid formed by ∼250 hexamers and 12 pentamers of the CA protein is delivered to the cytoplasm. The capsid shields the RNA genome and proteins required for reverse transcription. In addition, the surface of the capsid mediates numerous host-virus interactions, which either promote infection or enable viral restriction by innate immune responses. In the intact capsid, there is an intermolecular interface between the N-terminal domain (NTD) of one subunit and the C-terminal domain (CTD) of the adjacent subunit within the same hexameric ring. The NTD-CTD interface is critical for capsid assembly, both as an architectural element of the CA hexamer and pentamer and as a mechanistic element for generating lattice curvature. Here we report biochemical experiments showing that PF-3450074 (PF74), a drug that inhibits HIV-1 infection, as well as host proteins cleavage and polyadenylation specific factor 6 (CPSF6) and nucleoporin 153 kDa (NUP153), bind to the CA hexamer with at least 10-fold higher affinities compared with nonassembled CA or isolated CA domains. The crystal structure of PF74 in complex with the CA hexamer reveals that PF74 binds in a preformed pocket encompassing the NTD-CTD interface, suggesting that the principal inhibitory target of PF74 is the assembled capsid. Likewise, CPSF6 binds in the same pocket. Given that the NTD-CTD interface is a specific molecular signature of assembled hexamers in the capsid, binding of NUP153 at this site suggests that key features of capsid architecture remain intact upon delivery of the preintegration complex to the nucleus.


Assuntos
Capsídeo/química , HIV-1/química , Indóis/química , Fenilalanina/análogos & derivados , Fatores de Poliadenilação e Clivagem de mRNA/química , Capsídeo/metabolismo , Cristalografia por Raios X , Infecções por HIV , HIV-1/metabolismo , Indóis/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fenilalanina/química , Fenilalanina/farmacologia , Ligação Proteica , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
19.
Proc Natl Acad Sci U S A ; 108(2): 534-9, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187419

RESUMO

TRIM5α proteins are restriction factors that protect mammalian cells from retroviral infections by binding incoming viral capsids, accelerating their dissociation, and preventing reverse transcription of the viral genome. Individual TRIM5 isoforms can often protect cells against a broad range of retroviruses, as exemplified by rhesus monkey TRIM5α and its variant, TRIM5-21R, which recognize HIV-1 as well as several distantly related retroviruses. Although capsid recognition is not yet fully understood, previous work has shown that the C-terminal SPRY/B30.2 domain of dimeric TRIM5α binds directly to viral capsids, and that higher-order TRIM5α oligomerization appears to contribute to the efficiency of capsid recognition. Here, we report that recombinant TRIM5-21R spontaneously assembled into two-dimensional paracrystalline hexagonal lattices comprising open, six-sided rings. TRIM5-21R assembly did not require the C-terminal SPRY domain, but did require both protein dimerization and a B-box 2 residue (Arg121) previously implicated in TRIM5α restriction and higher-order assembly. Furthermore, TRIM5-21R assembly was promoted by binding to hexagonal arrays of the HIV-1 CA protein that mimic the surface of the viral capsid. We therefore propose that TRIM5α proteins have evolved to restrict a range of different retroviruses by assembling a deformable hexagonal scaffold that positions the capsid-binding domains to match the symmetry and spacing of the capsid surface lattice. Capsid recognition therefore involves a synergistic combination of direct binding interactions, avidity effects, templated assembly, and lattice complementarity.


Assuntos
Proteínas de Transporte/química , HIV-1/genética , Animais , Fatores de Restrição Antivirais , Capsídeo/metabolismo , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Dimerização , Humanos , Processamento de Imagem Assistida por Computador/métodos , Macaca mulatta , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Retroviridae/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
20.
J Mol Biol ; 436(4): 168409, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128824

RESUMO

Human immunodeficiency virus type 1 (HIV-1) stimulates innate immune responses upon infection, including cyclic GMP-AMP synthase (cGAS) signaling that results in type I interferon production. HIV-1-induced activation of cGAS requires the host cell factor polyglutamine binding protein 1 (PQBP1), an intrinsically disordered protein that bridges capsid recognition and cGAS recruitment. However, the molecular details of PQBP1 interactions with the HIV-1 capsid and their functional implications remain poorly understood. Here, we show that PQBP1 binds to HIV-1 capsids through charge complementing contacts between acidic residues in the N-terminal region of PQBP1 and an arginine ring in the central channel of the HIV-1 CA hexamer that makes up the viral capsid. These studies reveal the molecular details of PQBP1's primary interaction with the HIV-1 capsid and suggest that additional elements are likely to contribute to stable capsid binding.


Assuntos
Capsídeo , Proteínas de Ligação a DNA , HIV-1 , Humanos , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas de Ligação a DNA/química , HIV-1/química , Imunidade Inata , Nucleotidiltransferases/química , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA