RESUMO
Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio-temporal shifts in critical trade-offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 g C m-2 day-1 ) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade-offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions.
Assuntos
Aquicultura , Mudança Climática , Conservação dos Recursos Naturais/métodos , Pesqueiros/organização & administração , Peixes , Animais , Organismos Aquáticos , Humanos , TemperaturaRESUMO
Evaluating the effects of anthropogenic pressure on the marine environment is one of the focal objectives in identifying strategies for its use, conservation and restoration. In this paper, we assessed the effects of chemical pollutants, grain size and plastic litter on functional traits, biodiversity and biotic indices. The study was conducted on the benthic communities of three harbours in the central Mediterranean Sea: Malta, Augusta and Syracuse, subjected to different levels of anthropogenic stress (high, medium and low, respectively). Six traits were considered, subdivided into 22 categories: reproductive frequency, environmental position, mobility, life habit, feeding habit and bioturbation. Functional diversity indices analysed were: Functional Divergence, Quadratic Entropy, Functional Evenness and Functional Richness. To assess the trait responses to environmental gradients, we applied RLQ analysis, which considers simultaneously the relationship between three components: environmental data (R), species abundances (L) and species traits (Q). From our analyses, significant relationships (P-value = 0.0018 for permutation of samples, and P-value = 0.00027 for permutation of species) between functional traits and environmental data were highlighted. The trait categories significantly influenced by environmental variables were those representing feeding habits and mobility. In particular, the first category was influenced by chemical pollutants (organotin compounds and polycyclic aromatic hydrocarbons) and grain size (silt and sand), while the latter category was influenced only by chemical pollutants. Pearson correlations performed for functional vs biotic and diversity indices confirmed the validity of the chosen conceptual framework for harbour environments. Finally, linear models assessing the influence of stressors on functional parameters underlined the link between environmental data vs benthic and functional indices. Our results highlight the fact that functional trait analysis provides a useful and fast method for detecting in greater depth the effects of multiple stressors on functional diversity in marine ecosystems.
Assuntos
Ecossistema , Monitoramento Ambiental , Poluição da Água/análise , Biodiversidade , Malta , Mar MediterrâneoRESUMO
Five Descriptors (D) of Marine Strategy Framework Directive (MSFD): marine litter (D10), non-indigenous species (D2) and organic and inorganic pollutants (D8), were estimated in a coastal area of GSA 16 (Augusta harbour, Central Mediterranean Sea) in order to study their effects on the biodiversity (D1) of the benthic community D6) and to improve data for the MSFD. Investigation of plastic debris had led to the identification of 38 fragments divided into four categories, among which microplastics resulted as the most abundant. Six non-indigenous species, belonging to Polychaeta (Kirkegaardia dorsobranchialis, Notomastus aberans, Pista unibranchia, Pseudonereis anomala, Branchiomma bairdi) and Mollusca (Brachidontes pharaonis) were found. Biodiversity and benthic indices suggested a generalised, slightly disturbed ecological status. Anthracene, Zinc and Chrome were the most abundant chemical compounds in analysed sediments. Significant correlations were found between the abundance of trace elements vs biotic indices and between plastic debris vs biodiversity and benthic indices. This study represents the first report about the abundance of plastic debris and its relationship to contaminants and infauna in Augusta harbour. Our results can provide useful information for national and international laws and directives.