Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 43(10): 1472-1489, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35815345

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for faithful assignment of amino acids to their cognate tRNA. Variants in ARS genes are frequently associated with clinically heterogeneous phenotypes in humans and follow both autosomal dominant or recessive inheritance patterns in many instances. Variants in tryptophanyl-tRNA synthetase 1 (WARS1) cause autosomal dominantly inherited distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Presently, only one family with biallelic WARS1 variants has been described. We present three affected individuals from two families with biallelic variants (p.Met1? and p.(Asp419Asn)) in WARS1, showing varying severities of developmental delay and intellectual disability. Hearing impairment and microcephaly, as well as abnormalities of the brain, skeletal system, movement/gait, and behavior were variable features. Phenotyping of knocked down wars-1 in a Caenorhabditis elegans model showed depletion is associated with defects in germ cell development. A wars1 knockout vertebrate model recapitulates the human clinical phenotypes, confirms variant pathogenicity, and uncovers evidence implicating the p.Met1? variant as potentially impacting an exon critical for normal hearing. Together, our findings provide consolidating evidence for biallelic disruption of WARS1 as causal for an autosomal recessive neurodevelopmental syndrome and present a vertebrate model that recapitulates key phenotypes observed in patients.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Triptofano-tRNA Ligase , Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/genética , Éxons , Humanos , Mutação , Linhagem , RNA de Transferência/genética , Síndrome , Triptofano-tRNA Ligase/genética
2.
NPJ Genom Med ; 6(1): 104, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876591

RESUMO

The histone H3 variant H3.3, encoded by two genes H3-3A and H3-3B, can replace canonical isoforms H3.1 and H3.2. H3.3 is important in chromatin compaction, early embryonic development, and lineage commitment. The role of H3.3 in somatic cancers has been studied extensively, but its association with a congenital disorder has emerged just recently. Here we report eleven de novo missense variants and one de novo stop-loss variant in H3-3A (n = 6) and H3-3B (n = 6) from Baylor Genetics exome cohort (n = 11) and Matchmaker Exchange (n = 1), of which detailed phenotyping was conducted for 10 individuals (H3-3A = 4 and H3-3B = 6) that showed major phenotypes including global developmental delay, short stature, failure to thrive, dysmorphic facial features, structural brain abnormalities, hypotonia, and visual impairment. Three variant constructs (p.R129H, p.M121I, and p.I52N) showed significant decrease in protein expression, while one variant (p.R41C) accumulated at greater levels than wild-type control. One H3.3 variant construct (p.R129H) was found to have stronger interaction with the chaperone death domain-associated protein 6.

3.
Sci Adv ; 6(4): eaax0021, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010779

RESUMO

Lysine acetyltransferase 6A (KAT6A) and its paralog KAT6B form stoichiometric complexes with bromodomain- and PHD finger-containing protein 1 (BRPF1) for acetylation of histone H3 at lysine 23 (H3K23). We report that these complexes also catalyze H3K23 propionylation in vitro and in vivo. Immunofluorescence microscopy and ATAC-See revealed the association of this modification with active chromatin. Brpf1 deletion obliterates the acylation in mouse embryos and fibroblasts. Moreover, we identify BRPF1 variants in 12 previously unidentified cases of syndromic intellectual disability and demonstrate that these cases and known BRPF1 variants impair H3K23 propionylation. Cardiac anomalies are present in a subset of the cases. H3K23 acylation is also impaired by cancer-derived somatic BRPF1 mutations. Valproate, vorinostat, propionate and butyrate promote H3K23 acylation. These results reveal the dual functionality of BRPF1-KAT6 complexes, shed light on mechanisms underlying related developmental disorders and various cancers, and suggest mutation-based therapy for medical conditions with deficient histone acylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Linhagem Celular , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Predisposição Genética para Doença , Histona Acetiltransferases/genética , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Mutação , Neoplasias/diagnóstico , Transtornos do Neurodesenvolvimento/diagnóstico , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA