Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Stem Cells ; 41(1): 93-104, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36368017

RESUMO

While supplemental angiopoietin-1 (Ang1) improves hematopoiesis, excessive Ang1 induces bone marrow (BM) impairment, hematopoietic stem cell (HSC) senescence, and erythropoietic defect. Here, we examined how excessive Ang1 disturbs hematopoiesis and explored whether hematopoietic defects were related to its level using K14-Cre;c-Ang1 and Col2.3-Cre;c-Ang1 transgenic mice that systemically and locally overexpress cartilage oligomeric matrix protein-Ang1, respectively. We also investigated the impacts of Tie2 inhibitor and AMD3100 on hematopoietic development. Transgenic mice exhibited excessive angiogenic phenotypes, but K14-Cre;c-Ang1 mice showed more severe defects in growth and life span with higher presence of Ang1 compared with Col2.3-Cre;c-Ang1 mice. Dissimilar to K14-Cre;c-Ang1 mice, Col2.3-Cre;c-Ang1 mice did not show impaired BM retention or senescence of HSCs, erythropoietic defect, or disruption of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis. However, these mice exhibited a defect in platelet production depending on the expression of Tie2 and globin transcription factor 1 (GATA-1), but not GATA-2, in megakaryocyte progenitor (MP) cells. Treatment with Tie2 inhibitor recovered GATA-1 expression in MP cells and platelet production without changes in circulating RBC in transgenic mice. Consecutive AMD3100 administration not only induced irrecoverable senescence of HSCs but also suppressed formation of RBC, but not platelets, via correlated decreases in number of erythroblasts and their GATA-1 expression in B6 mice. Our results indicate that genetic overexpression of Ang1 impairs hematopoietic development depending on its level, in which megakaryopoiesis is preferentially impaired via activation of Ang1/Tie2 signaling, whereas erythropoietic defect is orchestrated by HSC senescence, inflammation, and disruption of the SDF-1/CXCR4 axis.


Assuntos
Anemia , Trombocitopenia , Camundongos , Animais , Proteína de Matriz Oligomérica de Cartilagem/genética , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Camundongos Transgênicos , Anemia/genética , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
2.
Stem Cells ; 39(1): 103-114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038284

RESUMO

Although functional association between Wnt signaling and bone homeostasis has been well described through genetic ablation of Wntless (Wls), the mechanisms of how osteoblastic Wls regulates the fate of bone marrow stromal cells (BMSCs) and hematopoietic stem cells (HSCs) in relation to age are not yet understood. Here, we generated Col2.3-Cre;Wlsfl/fl mice that were free from premature lethality and investigated age-related impacts of osteoblastic Wls deficiency on hematopoiesis, BM microenvironment, and maintenance of BMSCs (also known as BM-derived mesenchymal stem/stromal cells) and HSCs. Ablation of osteoblastic Wls deteriorated BM microenvironment and bone mass accrual along with age-independent effects on functions of BMSCs. Osteoblastic Wls deletion impaired HSC repopulation and progeny with skewing toward myeloid lineage cells only at old stage. As proven by hallmarks of stem cell senescence, osteoblastic Wls ablation differentially induced senescence of BMSCs and HSCs in relation to age without alteration in their BM frequency. Our findings support that deletion of Wls in Col2.3-expressing cells induces senescence of BMSCs and impairs BM microenvironment in age-independent manner. Overall, long-term deterioration in BM microenvironment contributes to age-related HSC senescence with impaired progeny and hematopoiesis, which also suggests possible roles of osteoblastic Wls on the maintenance of BM HSCs.


Assuntos
Envelhecimento/metabolismo , Células da Medula Óssea/metabolismo , Deleção de Genes , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Células-Tronco/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/metabolismo
3.
J Bone Miner Metab ; 37(5): 900-912, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30843129

RESUMO

Numerous studies have demonstrated the advantages of plant cell suspension culture systems in producing bioactive recombinant human growth factors. This study investigated the biological activity of recombinant basic human fibroblast growth factor (rhFGF2) protein produced by a plant culture system to enhance new bone formation in a bone defect mouse model. The human FGF2 cDNA gene was cloned into a plant expression vector driven by the rice α-amylase 3D promoter. The vector was introduced into rice calli (Oryza sativa L. cv. Dongjin), and the clone with the highest expression of rhFGF2 was selected. Maximum accumulation of rhFGF2 protein (approximately 28 mg/l) was reached at 13 day post-incubation. Male C57BL/6 mice underwent calvarial defect surgery and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 5 µg of plant-derived rhFGF2 (p-FGF2) protein or E. coli-derived rhFGF2 (e-FGF2) protein. Similar to the effects of e-FGF2, local delivery with p-FGF2 enhanced bone healing in the damaged region to higher levels than the ACS group. Exogenous addition of p-FGF2 or e-FGF2 exhibited similar effects on proliferation, mineralization, and osteogenic marker expression in MC3T3-E1 cells. Together, the current findings support the usefulness of this plant-based expression system for the production of biologically active rhFGF2.


Assuntos
Suplementos Nutricionais , Fator 2 de Crescimento de Fibroblastos/farmacologia , Oryza/genética , Osteogênese/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Crânio/patologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Biomarcadores/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Escherichia coli/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/isolamento & purificação , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Crânio/efeitos dos fármacos
4.
J Bone Miner Metab ; 35(5): 485-496, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27766421

RESUMO

Fibroblast growth factor 7 (FGF7) plays an important role in regulating the proliferation, migration, and differentiation of cells. However, the role of FGF7 in bone formation is not yet fully understood. We examined the effect of FGF7 on bone formation using a rat model of mandible defects. Rats underwent mandible defect surgery and then either scaffold treatment alone (control group) or FGF7-impregnated scaffold treatment (FGF7 group). Micro-CT and histological analyses revealed that the FGF7 group exhibited greater bone formation than did the control group 10 weeks after surgery. With the exception of total porosity (%), all bone parameters had higher values in the FGF7 group than in the control group at each follow-up after surgery. The FGF7 group showed greater expression of osteogenic markers, such as runt-related transcription factor 2, osterix, osteocalcin, bone morphogenetic protein 2, osteopontin, and type I collagen in newly formed bone than did the control group. The delivery of FGF7 also increased the messenger RNA expression of stromal-cell-derived factor 1 (SDF-1) and CXCR4 in newly formed bone in the FGF7 group compared with the control group. Further, addition of exogenous FGF7 induced migration of rat bone marrow stromal cells and increased the expression of SDF-1 and CXCR4 in the cells. Furthermore, the addition of FGF7 augmented mineralization in the cells with increased expression of osteogenic markers, and this augmentation was significantly suppressed by an inhibitor specific for c-Jun N-terminal kinase (SP600125) or extracellular-signal-regulated kinase (PD98059). Collectively, these results suggest that local delivery of FGF7 increases bone formation in a mandible defect with enhanced osteogenesis and chemoattraction.

5.
Mol Cell Biochem ; 411(1-2): 83-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26369531

RESUMO

Human periodontal ligament fibroblasts (hPLFs) are exposed to oxidative stress during periodontal inflammation and dental treatments. It is hypothesized that hydrogen peroxide (H2O2)-mediated oxidative stress decreases survival and osteogenic differentiation of hPLFs, whereas these decreases are prevented by activation of the Wnt pathway. However, there has been a lack of reports that define the exact roles of canonical Wnt/ß-catenin signaling in H2O2-exposed hPLFs. Treatment with H2O2 reduced viability and proliferation in hPLFs in a dose- and time-dependent manner and led to mitochondria-mediated apoptosis. Pretreatment with lithium chloride (LiCl) or Wnt1 inhibited the oxidative damage that occurred in H2O2-exposed hPLFs. However, knockout of ß-catenin or treatment with DKK1 facilitated the H2O2-induced decreases in viability, mitochondrial membrane potential, and Bcl-2 induction. Osteoblastic differentiation of hPLFs was also inhibited by combined treatment with 100 µM H2O2, as evidenced by the decreases in alkaline phosphatase (ALP) activity and mineralization. H2O2-mediated inhibition of osteoblast differentiation in hPLFs was significantly attenuated in the presence of 500 ng/ml Wnt1 or 20 mM LiCl. In particular, H2O2 stimulated the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) at protein and mRNA levels in hPLFs, whereas the induction was almost completely suppressed in the presence of Wnt1 or LiCl. Furthermore, siRNA-mediated silencing of Nrf2 blocked H2O2-induced decreases in ALP activity and mineralization of hPLFs with the concomitant restoration of runt-related transcription factor 2 and osteocalcin mRNA expression and ALP activity. Collectively, these results suggest that activation of the Wnt/ß-catenin pathway improves proliferation and mineralization in H2O2-exposed hPLFs by downregulating Nrf2.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Adulto , Fosfatase Alcalina/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Masculino , Ligamento Periodontal/citologia , Ligamento Periodontal/enzimologia , Adulto Jovem , beta Catenina/genética
6.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38260661

RESUMO

Absent in Melanoma (AIM) 2 is a gene that is induced by interferon and acts as a cytosolic sensor for double-stranded (ds) DNA. It forms the AIM2 inflammasome, leading to the production of interleukin (IL)-1ß and IL-18. Our previous research demonstrated that mice lacking AIM2 exhibit spontaneous obesity, insulin resistance, and inflammation in adipose tissue. In this study, we aimed to explore the impact of AIM2 gene deletion on bone structure in adult and aged mice. Utilizing micro-computed tomography (micro-CT), we discovered that female mice lacking AIM2 showed an increase in the total cross-sectional area at 5 months of age, accompanied by an increase in cortical thickness in the mid-diaphysis of the femur at both 5 and 15 months of age. At 15 months of age, the cortical bone mineral density (BMD) significantly decreased in AIM2 null females compared to wild-type (WT) mice. In AIM2 null mice, both trabecular bone volume and BMD at the distal metaphysis of the femur significantly decreased at 5 and 15 months of age. Similarly, micro-CT analysis of the L4 vertebra revealed significant decreases in trabecular bone volume and BMD in aged AIM2 null females compared to WT mice. Histological examination of femurs from aged mice demonstrated increased bone marrow adiposity in AIM2 null mice, accompanied by a significant increase in CD45-/CD31-/Sca1+/Pdgfa+ adipose progenitor cells, and a decrease in the ratio of CD31-/CD31+ osteogenic progenitor cells, as determined by flow cytometry of bone marrow cells. Our findings suggest that AIM2 deficiency affects bone health by promoting adipogenesis in bone marrow cells and inducing a pro-inflammatory environment, potentially contributing to the decreased bone mineral density.

7.
Arthritis Res Ther ; 26(1): 118, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851726

RESUMO

BACKGROUND: Primary osteoarthritis (OA) occurs without identifiable underlying causes such as previous injuries or specific medical conditions. Age is a major contributing factor to OA, and as one ages, various joint tissues undergo gradual change, including degeneration of the articular cartilage, alterations in subchondral bone (SCB) morphology, and inflammation of the synovium. METHODS: We investigated the prevalence of primary OA in aged, genetically diverse UM-HET3 mice. Articular cartilage (AC) integrity and SCB morphology were assessed in 182 knee joints of 22-25 months old mice using the Osteoarthritis Research Society International (OARSI) scoring system and micro-CT, respectively. Additionally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. RESULTS: Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13, inducible nitric oxide synthase, and the NLR family pyrin domain containing-3 inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and ß-galactosidase, also correlated with AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. CONCLUSIONS: Our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.


Assuntos
Envelhecimento , Osteoartrite , Animais , Masculino , Feminino , Camundongos , Envelhecimento/patologia , Envelhecimento/genética , Osteoartrite/genética , Osteoartrite/patologia , Osteoartrite/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Azul de Metileno/farmacologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Modelos Animais de Doenças , Progressão da Doença
8.
bioRxiv ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168298

RESUMO

This study investigated the prevalence and progression of primary osteoarthritis (OA) in aged UM-HET3 mice. Using the Osteoarthritis Research Society International (OARSI) scoring system, we assessed articular cartilage (AC) integrity in 182 knee joints of 22-25 months old mice. Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13 (MMP-13), inducible nitric oxide synthase (iNOS), and the NLR family pyrin domain containing-3 (NLRP3) inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and ß-galactosidase, also correlated with AC scores. Using micro-CT, we examined the correlations between subchondral bone (SCB) morphology traits and AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Finally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. In conclusion, our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.

9.
Res Sq ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38343826

RESUMO

Background: Primary osteoarthritis (OA) occurs without identifiable underlying causes such as previous injuries or specific medical conditions. Age is a major contributing factor to OA, and as one ages, various joint tissues undergo gradual change, including degeneration of the articular cartilage, alterations in subchondral bone (SCB) morphology, and inflammation of the synovium. Methods: We investigated the prevalence of primary OA in aged, genetically diverse UM-HET3 mice. Articular cartilage (AC) integrity and SCB morphology were assessed in 182 knee joints of 22-25 months old mice using the Osteoarthritis Research Society International (OARSI) scoring system and micro-CT, respectively. Additionally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. Results: Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13, inducible nitric oxide synthase, and the NLR family pyrin domain containing-3 inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and ß-galactosidase, also correlated with AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. Conclusions: Our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.

10.
Aging (Albany NY) ; 16(6): 4948-4964, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535998

RESUMO

Methylene blue (MB) is a well-established antioxidant that has been shown to improve mitochondrial function in both in vitro and in vivo settings. Mitoquinone (MitoQ) is a selective antioxidant that specifically targets mitochondria and effectively reduces the accumulation of reactive oxygen species. To investigate the effect of long-term administration of MB on skeletal morphology, we administered MB to aged (18 months old) female C57BL/J6 mice, as well as to adult male and female mice with a genetically diverse background (UM-HET3). Additionally, we used MitoQ as an alternative approach to target mitochondrial oxidative stress during aging in adult female and male UM-HET3 mice. Although we observed some beneficial effects of MB and MitoQ in vitro, the administration of these compounds in vivo did not alter the progression of age-induced bone loss. Specifically, treating 18-month-old female mice with MB for 6 or 12 months did not have an effect on age-related bone loss. Similarly, long-term treatment with MB from 7 to 22 months or with MitoQ from 4 to 22 months of age did not affect the morphology of cortical bone at the mid-diaphysis of the femur, trabecular bone at the distal-metaphysis of the femur, or trabecular bone at the lumbar vertebra-5 in UM-HET3 mice. Based on our findings, it appears that long-term treatment with MB or MitoQ alone, as a means to reduce skeletal oxidative stress, is insufficient to inhibit age-associated bone loss. This supports the notion that interventions solely with antioxidants may not provide adequate protection against skeletal aging.


Assuntos
Antioxidantes , Doenças Mitocondriais , Compostos Organofosforados , Ubiquinona/análogos & derivados , Masculino , Feminino , Camundongos , Animais , Antioxidantes/farmacologia , Azul de Metileno/farmacologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Envelhecimento
11.
Materials (Basel) ; 16(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176216

RESUMO

The combination of scaffolds with recombinant human epidermal growth factor (rhEGF) protein can enhance defective bone healing via synergistic activation to stimulate cellular growth, differentiation, and survival. We examined the biopotentials of an rhEGF-loaded absorbable collagen scaffold (ACS) using a mouse model of calvarial defects, in which the rhEGF was produced from a plant cell suspension culture system because of several systemic advantages. Here, we showed a successful and large-scale production of plant-cell-derived rhEGF protein (p-rhEGF) by introducing an expression vector that cloned with its cDNA under the control of rice α-amylase 3D promoter into rice calli (Oryza sativa L. cv. Dongjin). Implantation with p-rhEGF (5 µg)-loaded ACSs into critical-sized calvarial defects enhanced new bone formation and the expression of osteoblast-specific markers in the defected regions greater than implantation with ACSs alone did. The potency of p-rhEGF-induced bone healing was comparable with that of Escherichia coli-derived rhEGF protein. The exogenous addition of p-rhEGF increased the proliferation of human periodontal ligament cells and augmented the induction of interleukin 8, bone morphogenetic protein 2, and vascular endothelial growth factor in the cells. Collectively, this study demonstrates the successful and convenient production of p-rhEGF, as well as its potency to enhance ACS-mediated bone regeneration by activating cellular responses that are required for wound healing.

12.
Aging Dis ; 14(3): 919-936, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191410

RESUMO

Ionizing irradiation (IR) causes bone marrow (BM) injury, with senescence and impaired self-renewal of hematopoietic stem cells (HSCs), and inhibiting Wnt signaling could enhance hematopoietic regeneration and survival against IR stress. However, the underlying mechanisms by which a Wnt signaling blockade modulates IR-mediated damage of BM HSCs and mesenchymal stem cells (MSCs) are not yet completely understood. We investigated the effects of osteoblastic Wntless (Wls) depletion on total body irradiation (TBI, 5 Gy)-induced impairments in hematopoietic development, MSC function, and the BM microenvironment using conditional Wls knockout mutant mice (Col-Cre;Wlsfl/fl) and their littermate controls (Wlsfl/fl). Osteoblastic Wls ablation itself did not dysregulate BM frequency or hematopoietic development at a young age. Exposure to TBI at 4 weeks of age induced severe oxidative stress and senescence in the BM HSCs of Wlsfl/fl mice but not in those of the Col-Cre;Wlsfl/fl mice. TBI-exposed Wlsfl/fl mice exhibited greater impairments in hematopoietic development, colony formation, and long-term repopulation than TBI-exposed Col-Cre;Wlsfl/fl mice. Transplantation with BM HSCs or whole BM cells derived from the mutant, but not Wlsfl/fl mice, protected against HSC senescence and hematopoietic skewing toward myeloid cells and enhanced survival in recipients of lethal TBI (10 Gy). Unlike the Wlsfl/fl mice, the Col-Cre;Wlsfl/fl mice also showed radioprotection against TBI-mediated MSC senescence, bone mass loss, and delayed body growth. Our results indicate that osteoblastic Wls ablation renders BM-conserved stem cells resistant to TBI-mediated oxidative injuries. Overall, our findings show that inhibiting osteoblastic Wnt signaling promotes hematopoietic radioprotection and regeneration.

13.
Geroscience ; 45(3): 1933-1951, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37166526

RESUMO

Sodium glucose cotransporter-2 inhibitors (SGLT2is) promote urinary glucose excretion and decrease plasma glucose levels independent of insulin. Canagliflozin (CANA) is an SGLT2i, which is widely prescribed, to reduce cardiovascular complications, and as a second-line therapy after metformin in the treatment of type 2 diabetes mellitus. Despite the robust metabolic benefits, reductions in bone mineral density (BMD) and cortical fractures were reported for CANA-treated subjects. In collaboration with the National Institute on Aging (NIA)-sponsored Interventions Testing Program (ITP), we tested skeletal integrity of UM-HET3 mice fed control (137 mice) or CANA-containing diet (180 ppm, 156 mice) from 7 to 22 months of age. Micro-computed tomography (micro-CT) revealed that CANA treatment caused significant thinning of the femur mid-diaphyseal cortex in both male and female mice, did not affect trabecular bone architecture in the distal femur or the lumbar vertebra-5 in male mice, but was associated with thinning of the trabeculae at the distal femur in CANA-treated female mice. In male mice, CANA treatment is associated with significant reductions in cortical bone volumetric BMD by micro-CT, and by quantitative backscattered scanning electron microscopy. Raman microspectroscopy, taken at the femur mid-diaphyseal posterior cortex, showed significant reductions in the mineral/matrix ratio and an increased carbonate/phosphate ratio in CANA-treated male mice. These data were supported by thermogravimetric assay (TGA) showing significantly decreased mineral and increased carbonate content in CANA-treated male mice. Finally, the sintered remains of TGA were subjected to X-ray diffraction and showed significantly higher fraction of whitlockite, a calcium orthophosphate mineral, which has higher resorbability than hydroxyapatite. Overall, long-term CANA treatment compromised bone morphology and mineral composition of bones, which likely contribute to increased fracture risk seen with this drug.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Feminino , Animais , Camundongos , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Microtomografia por Raio-X , Esqueleto
14.
J Bone Miner Res ; 37(11): 2201-2214, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36069368

RESUMO

Excess in growth hormone (GH) levels, seen in patients with acromegaly, is associated with increases in fractures. This happens despite wider bones and independent of bone mineral density. We used the bovine GH (bGH) transgenic mice, which show constitutive excess in GH and insulin-like growth factor 1 (IGF-1) in serum and tissues, to study how lifelong increases in GH and IGF-1 affect skeletal integrity. Additionally, we crossed the acid labile subunit (ALS) null (ALSKO) to the bGH mice to reduce serum IGF-1 levels. Our findings indicate sexually dimorphic effects of GH on cortical and trabecular bone. Male bGH mice showed enlarged cortical diameters, but with marrow cavity expansion and thin cortices as well as increased vascular porosity that were associated with reductions in diaphyseal strength and stiffness. In contrast, female bGH mice presented with significantly smaller-diameter diaphysis, with greater cortical bone thickness and with a slightly reduced tissue elastic modulus (by microindentation), ultimately resulting in overall stronger, stiffer bones. We found increases in C-terminal telopeptide of type 1 collagen and procollagen type 1 N propeptide in serum, independent of circulating IGF-1 levels, indicating increased bone remodeling with excess GH. Sexual dimorphism in response to excess GH was also observed in the trabecular bone compartment, particularly at the femur distal metaphysis. Female bGH mice preserved their trabecular architecture during aging, whereas trabecular bone volume in male bGH mice significantly reduced and was associated with thinning of the trabeculae. We conclude that pathological excess in GH results in sexually dimorphic changes in bone architecture and gains in bone mass that affect whole-bone mechanical properties, as well as sex-specific differences in bone material properties. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Acromegalia , Fator de Crescimento Insulin-Like I , Bovinos , Masculino , Animais , Feminino , Camundongos , Fator de Crescimento Insulin-Like I/metabolismo , Osso e Ossos/metabolismo , Densidade Óssea , Camundongos Transgênicos , Colágeno Tipo I
15.
Mol Cell Endocrinol ; 519: 111052, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068640

RESUMO

Growth hormone (GH) and its mediator, the insulin-like growth factor-1 (IGF-1) regulate somatic growth, metabolism and many aspects of aging. As such, actions of GH/IGF have been studied in many tissues and organs over decades. GH and IGF-1 are part of the hypothalamic/pituitary somatotrophic axis that consists of many other regulatory hormones, receptors, binding proteins, and proteases. In humans, GH/IGF actions peak during pubertal growth and regulate skeletal acquisition through stimulation of extracellular matrix production and increases in bone mineral density. During aging the activity of these hormones declines, a state called somatopaguss, which associates with deleterious effects on the musculoskeletal system. In this review, we will focus on GH/IGF-1 action in bone and cartilage. We will cover many studies that have utilized congenital ablation or overexpression of members of this axis, as well as cell-specific gene-targeting approaches used to unravel the nature of the GH/IGF-1 actions in the skeleton in vivo.


Assuntos
Osso e Ossos/metabolismo , Cartilagem/metabolismo , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Desenvolvimento Ósseo , Humanos , Osteoartrite/metabolismo , Osteoartrite/patologia
16.
Aging Cell ; 20(8): e13427, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34240807

RESUMO

Osteoarthritis (OA), the most prevalent joint disease, is a major cause of disability worldwide. Growth hormone (GH) has been suggested to play significant roles in maintaining articular chondrocyte function and ultimately articular cartilage (AC) homeostasis. In humans, the age-associated decline in GH levels was hypothesized to play a role in the etiology of OA. We studied the impact of adult-onset isolated GH deficiency (AOiGHD) on the life span and skeletal integrity including the AC, in 23- to 30-month-old male and female mice on C57/BL6 genetic background. Reductions in GH during adulthood were associated with extended life span and reductions in body temperature in female mice only. However, end-of-life pathology revealed high levels of lymphomas in both sexes, independent of GH status. Skeletal characterization revealed increases in OA severity in AOiGHD mice, evidenced by AC degradation in both femur and tibia, and significantly increased osteophyte formation in AOiGHD females. AOiGHD males showed significant increases in the thickness of the synovial lining cell layer that was associated with increased markers of inflammation (IL-6, iNOS). Furthermore, male AOiGHD showed significant increases in matrix metalloproteinase-13 (MMP-13), p16, and ß-galactosidase immunoreactivity in the AC as compared to controls, indicating increased cell senescence. In conclusion, while the life span of AOiGHD females increased, their health span was compromised by high-grade lymphomas and the development of severe OA. In contrast, AOiGHD males, which did not show extended life span, showed an overall low grade of lymphomas but exhibited significantly decreased health span, evidenced by increased OA severity.


Assuntos
Longevidade/genética , Osteoartrite/genética , Caracteres Sexuais , Envelhecimento , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
17.
Aging Cell ; 20(12): e13505, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811875

RESUMO

Somatopause refers to the gradual declines in growth hormone (GH) and insulin-like growth factor-1 throughout aging. To define how induced somatopause affects skeletal integrity, we used an inducible GH receptor knockout (iGHRKO) mouse model. Somatopause, induced globally at 6 months of age, resulted in significantly more slender bones in both male and female iGHRKO mice. In males, induced somatopause was associated with progressive expansion of the marrow cavity leading to significant thinning of the cortices, which compromised bone strength. We report progressive declines in osteocyte lacunar number, and increases in lacunar volume, in iGHRKO males, and reductions in lacunar number accompanied by ~20% loss of overall canalicular connectivity in iGHRKO females by 30 months of age. Induced somatopause did not affect mineral/matrix ratio assessed by Raman microspectroscopy. We found significant increases in bone marrow adiposity and high levels of sclerostin, a negative regulator of bone formation in iGHRKO mice. Surprisingly, however, despite compromised bone morphology, osteocyte senescence was reduced in the iGHRKO mice. In this study, we avoided the confounded effects of constitutive deficiency in the GH/IGF-1 axis on the skeleton during growth, and specifically dissected its effects on the aging skeleton. We show here, for the first time, that induced somatopause compromises bone morphology and the bone marrow environment.


Assuntos
Composição Corporal/fisiologia , Doenças Ósseas Metabólicas/fisiopatologia , Hormônio do Crescimento/efeitos adversos , Análise Espectral Raman/métodos , Envelhecimento , Animais , Feminino , Masculino , Camundongos
18.
Mol Cells ; 44(4): 254-266, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33935045

RESUMO

Numerous studies highlight the potential benefits potentials of supplemental cartilage oligomeric matrix protein-angiopoietin-1 (COMP-Ang1) through improved angiogenic effects. However, our recent findings show that excessive overexpression of COMP-Ang1 induces an impaired bone marrow (BM) microenvironment and senescence of hematopoietic stem cells (HSCs). Here, we investigated the underlying mechanisms of how excessive COMP-Ang1 affects the function of BM-conserved stem cells and hematopoiesis using K14-Cre;inducible-COMP-Ang1-transgenic mice. Excessive COMP-Ang1 induced peripheral egression and senescence of BM HSCs and mesenchymal stem cells (MSCs). Excessive COMP-Ang1 also caused abnormal hematopoiesis along with skewed differentiation of HSCs toward myeloid lineage rather than lymphoid lineage. Especially, excessive COMP-Ang1 disturbed late-stage erythroblast maturation, followed by decreased expression of stromal cell-derived factor 1 (SDF-1) and globin transcription factor 1 (GATA-1) and increased levels of superoxide anion and p-p38 kinase. However, transplantation with the mutant-derived BM cells or treatment with rhCOMP-Ang1 protein did not alter the frequency or GATA-1 expression of erythroblasts in recipient mice or in cultured BM cells. Together, our findings suggest that excessive COMP-Ang1 impairs the functions of BM HSCs and MSCs and hematopoietic processes, eventually leading to abnormal erythropoiesis via imbalanced SDF-1/CXCR4 axis and GATA-1 expression rather than Ang1/Tie2 signaling axis alterations.


Assuntos
Angiopoietina-1/metabolismo , Eritrócitos/metabolismo , Hematopoese/genética , Animais , Diferenciação Celular , Humanos , Camundongos , Camundongos Transgênicos
19.
JBMR Plus ; 5(5): e10483, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33977201

RESUMO

Patients with type 1 diabetes mellitus (T1DM) exhibit reduced BMD and significant increases in fracture risk. Changes in BMD are attributed to blunted osteoblast activity and inhibited bone remodeling, but these cannot fully explain the impaired bone integrity in T1DM. The goal of this study was to determine the cellular mechanisms that contribute to impaired bone morphology and composition in T1DM. Nonobese diabetic (NOD) mice were used, along with µCT, histomorphometry, histology, Raman spectroscopy, and RNAseq analyses of several skeletal sites in response to naturally occurring hyperglycemia and insulin treatment. The bone volume in the axial skeleton was found to be severely reduced in diabetic NOD mice and was not completely resolved with insulin treatment. Decreased bone volume in diabetic mice was associated with increased sclerostin expression in osteocytes and attenuation of bone formation indices without changes in bone resorption. In the face of blunted bone remodeling, decreases in the mineral:matrix ratio were found in cortical bones of diabetic mice by Raman microspectroscopy, suggesting that T1DM did not affect the bone mineralization process per se, but rather resulted in microenvironmental alterations that favored mineral loss. Bone transcriptome analysis indicated metabolic shifts in response to T1DM. Dysregulation of genes involved in fatty acid oxidation, transport, and synthesis was found in diabetic NOD mice. Specifically, pyruvate dehydrogenase kinase isoenzyme 4 and glucose transporter 1 levels were increased, whereas phosphorylated-AKT levels were significantly reduced in diabetic NOD mice. In conclusion, in addition to the blunted bone formation, osteoblasts and osteocytes undergo metabolic shifts in response to T1DM that may alter the microenvironment and contribute to mineral loss from the bone matrix. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

20.
Int J Biol Macromol ; 164: 976-985, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32710964

RESUMO

We present an integrated design and fabrication strategy for the development of hierarchically structured biomechanically and biologically functional tissue scaffold. An integration of ß-TCP incorporated fluffy type nanofibers and biodegradable interpenetrating gelatin-hydrogel networks (IGN) result in biomimetic tissue engineered constructs with fully tunable properties that can match specific tissue requirements. FESEM images showed that nanofibers were efficiently assembled into an orientation of IGN without disturbing its pore architecture. The pore architecture, compressive stiffness and modulus, swelling, and the biological properties of the composite constructs can be tailored by adjusting the composition of nanofiber content with respect to IGN. Experimental results of cell proliferation assay and confocal microscopy imaging showed that the as-fabricated composite constructs exhibit excellent ability for MC3T3-E1 cell proliferation, infiltration and growth. Furthermore, ß-TCP incorporated functionalized nanofiber enhanced the biomimetic mineralization, cell infiltration and cell proliferation. Within two weeks of cell-seeding, the composite construct exhibited enhanced osteogenic performance (Runx2, osterix and ALP gene expression) compared to pristine IGN hydrogel scaffold. Our integrated design and fabrication approach enables the assembly of nanofiber within IGN architecture, laying the foundation for biomimetic scaffold.


Assuntos
Fosfatos de Cálcio/química , Hidrogéis , Nanofibras/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Células 3T3 , Fosfatase Alcalina/química , Animais , Fenômenos Biomecânicos , Biomimética , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/química , Gelatina , Camundongos , Osteoblastos/citologia , Osteogênese , Fator de Transcrição Sp7/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA