Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 320(6): H2313-H2323, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961507

RESUMO

Vascular calcification is associated with a higher incidence of cardiovascular events, but its prevalence in different vascular zones and the influence of demographics, risk factors, and morphometry remain insufficiently understood. Computerized tomography angiography scans from 211 subjects 5-93 yr old (mean age 47 ± 24 yr, 127 M/84 F) were used to build 3D vascular reconstructions and measure arterial diameters, tortuosity, and calcification volumes in six vascular zones spanning from the ascending thoracic aorta to the pelvic arteries. A machine learning random forest algorithm was used to determine the associations between calcification in each zone with demographics, risk factors, and vascular morphometry. Calcification appeared during the fourth decade of life and was present in all subjects after 65 yr. The abdominal aorta and the iliofemoral segment were the first to develop calcification, whereas the ascending thoracic aorta was the last. Demographics and risk factors explained 33-59% of the variation in calcification. Age, creatinine level, body mass index, coronary artery disease, and hypertension were the strongest contributors, whereas the effects of sex, race, tobacco use, diabetes, dyslipidemia, and alcohol and substance use disorders on calcification were small. Vascular morphometry did not directly and independently affect calcium burden. Vascular zones develop calcification asynchronously, with distal segments calcifying first. Understanding the influence of demographics and risk factors on calcium prevalence can help better understand the disease pathophysiology and may help with the early identification of patients that are at higher risk of cardiovascular events.NEW & NOTEWORTHY We investigated the prevalence of vascular calcification in different zones of the aorta and pelvic arteries using computerized tomography angiography reconstructions and have applied machine learning to determine how calcification is affected by demographics, risk factors, and morphometry. The presented data can help identify patients at higher risk of developing vascular calcification that may lead to cardiovascular events.


Assuntos
Aorta Abdominal/diagnóstico por imagem , Aorta Torácica/diagnóstico por imagem , Calcificação Vascular/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Aorta/diagnóstico por imagem , Criança , Pré-Escolar , Angiografia por Tomografia Computadorizada , Feminino , Humanos , Imageamento Tridimensional , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Calcificação Vascular/diagnóstico por imagem , Adulto Jovem
2.
Ann Surg ; 270(1): 180-187, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29578912

RESUMO

BACKGROUND: Poor durability of femoropopliteal artery (FPA) stenting is multifactorial, and severe FPA deformations occurring with limb flexion are likely involved. Different stent designs result in dissimilar stent-artery interactions, but the degree of these effects in the FPA is insufficiently understood. OBJECTIVES: To determine how different stent designs affect limb flexion-induced FPA deformations. METHODS: Retrievable markers were deployed into n = 28 FPAs of lightly embalmed human cadavers. Bodies were perfused and CT images were acquired with limbs in the standing, walking, sitting, and gardening postures. Image analysis allowed measurement of baseline FPA foreshortening, bending, and twisting associated with each posture. Markers were retrieved and 7 different stents were deployed across the adductor hiatus in the same limbs. Markers were then redeployed in the stented FPAs, and limbs were reimaged. Baseline and stented FPA deformations were compared to determine the influence of each stent design. RESULTS: Proximal to the stent, Innova, Supera, and SmartFlex exacerbated foreshortening, SmartFlex exacerbated twisting, and SmartControl restricted bending of the FPA. Within the stent, all devices except Viabahn restricted foreshortening; Supera, SmartControl, and AbsolutePro restricted twisting; SmartFlex and Innova exacerbated twisting; and Supera and Viabahn restricted bending. Distal to the stents, all devices except AbsolutePro and Innova exacerbated foreshortening, and Viabahn, Supera, Zilver, and SmartControl exacerbated twisting. All stents except Supera were pinched in flexed limb postures. CONCLUSIONS: Peripheral self-expanding stents significantly affect limb flexion-induced FPA deformations, but in different ways. Although certain designs seem to accommodate some deformation modes, no device was able to match all FPA deformations.


Assuntos
Aterosclerose/terapia , Artéria Femoral/fisiologia , Artéria Poplítea/fisiologia , Desenho de Prótese , Falha de Prótese/etiologia , Stents Metálicos Autoexpansíveis , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Feminino , Artéria Femoral/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Poplítea/diagnóstico por imagem , Falha de Prótese/efeitos adversos , Tomografia Computadorizada por Raios X
3.
Arterioscler Thromb Vasc Biol ; 38(4): e48-e57, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29371245

RESUMO

OBJECTIVE: Arterial calcification and stiffening increase the risk of reconstruction failure, amputation, and mortality in patients with peripheral arterial disease, but underlying mechanisms and prevalence are unclear. APPROACH AND RESULTS: Fresh human femoropopliteal arteries were obtained from n=431 tissue donors aged 13 to 82 years (mean age, 53±16 years) recording the in situ longitudinal prestretch. Arterial diameter, wall thickness, and opening angles were measured optically, and stiffness was assessed using planar biaxial extension and constitutive modeling. Histological features were determined using transverse and longitudinal Verhoeff-Van Gieson and Alizarin stains. Medial calcification was quantified using a 7-stage grading scale and was correlated with structural and mechanical properties and clinical characteristics. Almost half (46%) of the femoropopliteal arteries had identifiable medial calcification. Older arteries were more calcified, but small calcium deposits were observed in arteries as young as 18 years old. After controlling for age, positive correlations were observed between calcification, diabetes mellitus, dyslipidemia, and body mass index. Tobacco use demonstrated a negative correlation. Calcified arteries were larger in diameter but had smaller circumferential opening angles. They were also stiffer longitudinally and circumferentially and had thinner tunica media and external elastic lamina with more discontinuous elastic fibers. CONCLUSIONS: Although aging is the dominant risk factor for femoropopliteal artery calcification and stiffening, these processes seem to be linked and can begin at a young age. Calcification is associated with the presence of certain risk factors and with elastic fiber degradation, suggesting overlapping molecular pathways that require further investigation.


Assuntos
Artéria Femoral/fisiopatologia , Doença Arterial Periférica/epidemiologia , Doença Arterial Periférica/fisiopatologia , Artéria Poplítea/fisiopatologia , Calcificação Vascular/epidemiologia , Calcificação Vascular/fisiopatologia , Rigidez Vascular , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Factuais , Tecido Elástico/patologia , Tecido Elástico/fisiopatologia , Feminino , Artéria Femoral/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Nebraska/epidemiologia , Doença Arterial Periférica/diagnóstico , Artéria Poplítea/patologia , Prevalência , Fatores de Risco , Índice de Gravidade de Doença , Calcificação Vascular/diagnóstico , Remodelação Vascular , Adulto Jovem
4.
J Vasc Surg ; 67(2): 607-613, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28526560

RESUMO

BACKGROUND: High failure rates of femoropopliteal artery (FPA) interventions are often attributed in part to severe mechanical deformations that occur with limb movement. Axial compression and bending of the FPA likely play significant roles in FPA disease development and reconstruction failure, but these deformations are poorly characterized. The goal of this study was to quantify axial compression and bending of human FPAs that are placed in positions commonly assumed during the normal course of daily activities. METHODS: Retrievable nitinol markers were deployed using a custom-made catheter system into 28 in situ FPAs of 14 human cadavers. Contrast-enhanced, thin-section computed tomography images were acquired with each limb in the standing (180 degrees), walking (110 degrees), sitting (90 degrees), and gardening (60 degrees) postures. Image segmentation and analysis allowed relative comparison of spatial locations of each intra-arterial marker to determine axial compression and bending using the arterial centerlines. RESULTS: Axial compression in the popliteal artery (PA) was greater than in the proximal superficial femoral artery (SFA) or the adductor hiatus (AH) segments in all postures (P = .02). Average compression in the SFA, AH, and PA ranged from 9% to 15%, 11% to 19%, and 13% to 25%, respectively. The FPA experienced significantly more acute bending in the AH and PA segments compared with the proximal SFA (P < .05) in all postures. In the walking, sitting, and gardening postures, average sphere radii in the SFA, AH, and PA ranged from 21 to 27 mm, 10 to 18 mm, and 8 to 19 mm, whereas bending angles ranged from 150 to 157 degrees, 136 to 147 degrees, and 137 to 148 degrees, respectively. CONCLUSIONS: The FPA experiences significant axial compression and bending during limb flexion that occur at even modest limb angles. Moreover, different segments of the FPA appear to undergo significantly different degrees of deformation. Understanding the effects of limb flexion on axial compression and bending might assist with reconstructive device selection for patients requiring peripheral arterial disease intervention and may also help guide the development of devices with improved characteristics that can better adapt to the dynamic environment of the lower extremity vasculature.


Assuntos
Angiografia por Tomografia Computadorizada , Artéria Femoral/diagnóstico por imagem , Artéria Poplítea/diagnóstico por imagem , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Cadáver , Angiografia por Tomografia Computadorizada/instrumentação , Feminino , Marcadores Fiduciais , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Postura , Interpretação de Imagem Radiográfica Assistida por Computador , Fluxo Sanguíneo Regional , Estresse Mecânico
5.
J R Soc Interface ; 15(145)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135264

RESUMO

High failure rates of femoropopliteal artery (FPA) interventions are often attributed to severe mechanical deformations that occur with limb flexion. One of these deformations, cross-sectional pinching, has a direct effect on blood flow, but is poorly characterized. Intra-arterial markers were deployed into n = 50 in situ cadaveric FPAs (80 ± 12 years old, 14F/11M), and limbs were imaged in standing, walking, sitting and gardening postures. Image analysis was used to measure marker openings and calculate FPA pinching. Parametric finite element analysis on a stent section was used to determine the optimal combination of stent strut amplitude, thickness and the number of struts per section to maximize cross-sectional opening and minimize intramural mechanical stress and low wall shear stress. Pinching was higher distally and increased with increasing limb flexion. In the walking, sitting and gardening postures, it was 1.16-1.24, 1.17-1.26 and 1.19-1.35, respectively. Stent strut amplitude and thickness had strong effects on both intramural stresses and pinching. Stents with a strut amplitude of 3 mm, thickness of 175 µm and 20 struts per section produced pinching and intramural stresses typical for a non-stented FPA, while also minimizing low wall shear stress areas, and ensuring a stent lifespan of at least 107 cycles. These results can help guide the development of improved devices and materials to treat peripheral arterial disease.


Assuntos
Prótese Vascular , Artéria Femoral/fisiopatologia , Modelos Cardiovasculares , Artéria Poplítea/fisiopatologia , Desenho de Prótese , Stents , Idoso , Idoso de 80 Anos ou mais , Feminino , Artéria Femoral/patologia , Humanos , Perna (Membro)/irrigação sanguínea , Perna (Membro)/fisiopatologia , Masculino , Artéria Poplítea/patologia , Resistência ao Cisalhamento , Estresse Mecânico , Caminhada
6.
Biomech Model Mechanobiol ; 17(1): 181-189, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28815378

RESUMO

Femoropopliteal artery (FPA) reconstructions are notorious for poor clinical outcomes. Mechanical and flow conditions that occur in the FPA with limb flexion are thought to play a significant role, but are poorly characterized. FPA deformations due to acute limb flexion were quantified using a human cadaver model and used to build a finite element model that simulated surrounding tissue forces associated with limb flexion-induced deformations. Strains and intramural principal mechanical stresses were determined for seven age groups. Computational fluid dynamics analysis was performed to assess hemodynamic variables. FPA shape, stresses, and hemodynamics significantly changed with age. Younger arteries assumed straighter positions in the flexed limb with less pronounced bends and more uniform stress distribution along the length of the artery. Even in the flexed limb posture, FPAs younger than 50 years of age experienced tension, while older FPAs experienced compression. Aging resulted in localization of principal mechanical stresses to the adductor hiatus and popliteal artery below the knee that are typically prone to developing vascular pathology. Maximum principal stresses in these areas increased threefold to fivefold with age with largest increase observed at the adductor hiatus. Atheroprotective wall shear stress reduced after 35 years of age, and atheroprone and oscillatory shear stresses increased after the age of 50. These data can help better understand FPA pathophysiology and can inform the design of targeted materials and devices for peripheral arterial disease treatments.


Assuntos
Envelhecimento/fisiologia , Artéria Femoral/fisiopatologia , Hemodinâmica , Artéria Poplítea/fisiopatologia , Amplitude de Movimento Articular , Estresse Mecânico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Extremidades/fisiopatologia , Artéria Femoral/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Artéria Poplítea/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto Jovem
7.
Ann Biomed Eng ; 46(5): 684-704, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29470746

RESUMO

Endovascular stenting has matured into a commonly used treatment for peripheral arterial disease (PAD) due to its minimally invasive nature and associated reductions in short-term morbidity and mortality. The mechanical properties of the superelastic Nitinol alloy have played a major role in the explosion of peripheral artery stenting, with modern stents demonstrating reasonable resilience and durability. Yet in the superficial femoral and popliteal arteries, even the newest generation Nitinol stents continue to demonstrate clinical outcomes that leave significant room for improvement. Restenosis and progression of native arterial disease often lead to recurrence of symptoms and reinterventions that increase morbidity and health care expenditures. One of the main factors thought to be associated with stent failure in the femoropopliteal artery (FPA) is the unique and highly dynamic mechanical environment of the lower limb. Clinical and experimental data demonstrate that the FPA undergoes significant deformations with limb flexion. It is hypothesized that the inability of many existing stent designs to conform to these deformations likely plays a role in reconstruction failure, as repetitive movements of the leg and thigh combine with mechanical mismatch between the artery and the stent and result in mechanical damage to both the artery and the stent. In this review we will identify challenges and provide a mechanical perspective of FPA stenting, and then discuss current research directions with promise to provide a better understanding of Nitinol, specific features of stent design, and improved characterization of the biomechanical environment of the FPA to facilitate development of better stents for patients with PAD.


Assuntos
Ligas , Prótese Vascular , Artéria Femoral , Doença Arterial Periférica/cirurgia , Artéria Poplítea , Desenho de Prótese/métodos , Stents , Animais , Humanos , Doença Arterial Periférica/patologia
8.
Biomech Model Mechanobiol ; 16(3): 775-785, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27868162

RESUMO

Open and endovascular treatments for peripheral arterial disease are notorious for high failure rates. Severe mechanical deformations experienced by the femoropopliteal artery (FPA) during limb flexion and interactions between the artery and repair materials play important roles and may contribute to poor clinical outcomes. Computational modeling can help optimize FPA repair, but these simulations heavily depend on the choice of constitutive model describing the arterial behavior. In this study finite element model of the FPA in the standing (straight) and gardening (acutely bent) postures was built using computed tomography data, longitudinal pre-stretch and biaxially determined mechanical properties. Springs and dashpots were used to represent surrounding tissue forces associated with limb flexion-induced deformations. These forces were then used with age-specific longitudinal pre-stretch and mechanical properties to obtain deformed FPA configurations for seven age groups. Four commonly used invariant-based constitutive models were compared to determine the accuracy of capturing deformations and stresses in each age group. The four-fiber FPA model most accurately portrayed arterial behavior in all ages, but in subjects younger than 40 years, the performance of all constitutive formulations was similar. In older subjects, Demiray (Delfino) and classic two-fiber Holzapfel-Gasser-Ogden formulations were better than the Neo-Hookean model for predicting deformations due to limb flexion, but both significantly overestimated principal stresses compared to the FPA or Neo-Hookean models.


Assuntos
Artérias/fisiologia , Fêmur/irrigação sanguínea , Modelos Biológicos , Estresse Mecânico , Fatores Etários , Artérias/diagnóstico por imagem , Simulação por Computador , Fêmur/diagnóstico por imagem , Humanos , Articulações/irrigação sanguínea , Articulações/diagnóstico por imagem , Tomografia Computadorizada por Raios X
9.
Biomech Model Mechanobiol ; 16(2): 681-692, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27771811

RESUMO

Femoropopliteal artery (FPA) mechanics play a paramount role in pathophysiology and the artery's response to therapeutic interventions, but data on FPA mechanical properties are scarce. Our goal was to characterize human FPAs over a wide population to derive a constitutive description of FPA aging to be used for computational modeling. Fresh human FPA specimens ([Formula: see text]) were obtained from [Formula: see text] predominantly male (80 %) donors 54±15 years old (range 13-82 years). Morphometric characteristics including radius, wall thickness, opening angle, and longitudinal pre-stretch were recorded. Arteries were subjected to multi-ratio planar biaxial extension to determine constitutive parameters for an invariant-based model accounting for the passive contributions of ground substance, elastin, collagen, and smooth muscle. Nonparametric bootstrapping was used to determine unique sets of material parameters that were used to derive age-group-specific characteristics. Physiologic stress-stretch state was calculated to capture changes with aging. Morphometric and constitutive parameters were derived for seven age groups. Vessel radius, wall thickness, and circumferential opening angle increased with aging, while longitudinal pre-stretch decreased ([Formula: see text]). Age-group-specific constitutive parameters portrayed orthotropic FPA stiffening, especially in the longitudinal direction. Structural changes in artery wall elastin were associated with reduction of physiologic longitudinal and circumferential stretches and stresses with age. These data and the constitutive description of FPA aging shed new light on our understanding of peripheral arterial disease pathophysiology and arterial aging. Application of this knowledge might improve patient selection for specific treatment modalities in personalized, precision medicine algorithms and could assist in device development for treatment of peripheral artery disease.


Assuntos
Envelhecimento , Artérias/fisiologia , Modelos Biológicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Colágeno/metabolismo , Elastina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/fisiopatologia , Adulto Jovem
10.
J Mech Behav Biomed Mater ; 75: 160-168, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28734257

RESUMO

High failure rates of Peripheral Arterial Disease (PAD) stenting appear to be associated with the inability of certain stent designs to accommodate severe biomechanical environment of the femoropopliteal artery (FPA) that bends, twists, and axially compresses during limb flexion. Twelve Nitinol stents (Absolute Pro, Supera, Lifestent, Innova, Zilver, Smart Control, Smart Flex, EverFlex, Viabahn, Tigris, Misago, and Complete SE) were quasi-statically tested under bench-top axial and radial compression, axial tension, bending, and torsional deformations. Stents were compared in terms of force-strain behavior, stiffness, and geometrical shape under each deformation mode. Tigris was the least stiff stent under axial compression (6.6N/m axial stiffness) and bending (0.1N/m) deformations, while Smart Control was the stiffest (575.3N/m and 105.4N/m, respectively). Under radial compression Complete SE was the stiffest (892.8N/m), while Smart Control had the lowest radial stiffness (211.0N/m). Viabahn and Supera had the lowest and highest torsional stiffness (2.2µNm/° and 959.2µNm/°), respectively. None of the 12 PAD stents demonstrated superior characteristics under all deformation modes and many experienced global buckling and diameter pinching. Though it is yet to be determined which of these deformation modes might have greater clinical impact, results of the current analysis may help guide development of new stents with improved mechanical characteristics.


Assuntos
Teste de Materiais , Desenho de Prótese , Stents , Ligas , Desenho de Equipamento , Artéria Femoral , Humanos , Fenômenos Mecânicos
11.
J R Soc Interface ; 14(128)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28330991

RESUMO

High failure rates of femoropopliteal artery (FPA) interventions are often attributed to severe mechanical deformations that occur with limb movement. Torsion of the FPA likely plays a significant role, but is poorly characterized and the associated intramural stresses are currently unknown. FPA torsion in the walking, sitting and gardening postures was characterized in n = 28 in situ FPAs using intra-arterial markers. Principal mechanical stresses and strains were quantified in the superficial femoral artery (SFA), adductor hiatus segment (AH) and the popliteal artery (PA) using analytical modelling. The FPA experienced significant torsion during limb flexion that was most severe in the gardening posture. The associated mechanical stresses were non-uniformly distributed along the length of the artery, increasing distally and achieving maximum values in the PA. Maximum twist in the SFA ranged 10-13° cm-1, at the AH 8-16° cm-1, and in the PA 14-26° cm-1 in the walking, sitting and gardening postures. Maximum principal stresses were 30-35 kPa in the SFA, 27-37 kPa at the AH and 39-43 kPa in the PA. Understanding torsional deformations and intramural stresses in the FPA can assist with device selection for peripheral arterial disease interventions and may help guide the development of devices with improved characteristics.


Assuntos
Artéria Femoral/fisiologia , Extremidade Inferior/irrigação sanguínea , Modelos Cardiovasculares , Estresse Mecânico , Feminino , Humanos , Masculino
12.
Acta Biomater ; 32: 231-237, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26766633

RESUMO

In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n=148 fresh human FPAs (14-80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff-Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r=-0.812, p<0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r=-0.553, p<0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users. STATEMENT OF SIGNIFICANCE: This work studies in situ longitudinal pre-stretch (LPS) in the human femoropopliteal artery. LPS has a fundamental role in arterial mechanics, but is rather poorly studied due to lack of direct in vivo measurement method. We have investigated LPS in the n=148 human femoropopliteal arteries in the context of subject demographics and risk factors, and structural and physiologic characteristics of the artery. Our results demonstrate that LPS reduces with age due to degradation and fragmentation of intramural elastin. LPS may serve as an energy reserve for adaptive remodeling, and reduction of LPS can be accelerated in tobacco users.


Assuntos
Artéria Femoral/fisiologia , Artéria Poplítea/fisiologia , Estresse Mecânico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Túnica Íntima/patologia , Túnica Média/patologia , Adulto Jovem
13.
J Trauma Acute Care Surg ; 80(6): 941-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27015580

RESUMO

BACKGROUND: Uncontrolled hemorrhage from vessel injuries within the torso remains a significant source of prehospital trauma mortality. Resuscitative endovascular balloon occlusion of the aorta can effectively control noncompressible hemorrhage, but this minimally invasive technique relies heavily on imaging not available in the field. Our goal was to develop morphometric roadmaps to enhance the safety and accuracy of fluoroscopy-free endovascular navigation of hemorrhage control devices. METHODS: Three-dimensional reconstructions of computed tomographic angiography scans from 122 trauma patients (mean [SD] age, 47 [24] years; range 5-93 years; 64 males; 58 females) were used to measure centerline distances from femoral artery access sites to the major aortic branch artery origins. Morphometric roadmap equations were created using multiple linear regression analysis to predict distances to the origins of the major arteries in the chest, abdomen, and pelvis using torso length, demographics, and risk factors as independent variables. A 40-mm-long occlusion balloon was then virtually deployed targeting Zones 1 and 3 of the aorta using these equations. Balloon placement accuracy was determined by comparing predicted versus actual measured distances to the target zone locations within the aortas from the database. RESULTS: Torso length and age were the strongest predictors of centerline distances from femoral artery access sites to the major artery origins. Male sex contributed to longer distances, while diabetes and smoking were associated with shorter distances. Hypertension, dyslipidemia, and coronary artery disease had no effect. With the use of morphometric roadmaps, virtual occlusion balloon placement accuracy was 100% for Zone 3 of the aorta, compared with 87% accuracy when using torso length alone. CONCLUSION: Morphometric roadmaps demonstrate a potential for improving the safety and accuracy of fluoroscopy-free aortic occlusion balloon delivery. Continued development of minimally invasive hemorrhage control techniques holds promise to improve prehospital mortality for patients with noncompressible exsanguinating torso injuries. LEVEL OF EVIDENCE: Therapeutic study, level IV; diagnostic study, level III.


Assuntos
Aorta/lesões , Oclusão com Balão/métodos , Hemorragia/terapia , Ressuscitação/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aorta/diagnóstico por imagem , Criança , Pré-Escolar , Meios de Contraste , Feminino , Hemorragia/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA