Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Mol Life Sci ; 79(7): 378, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739402

RESUMO

SUMOylation is a post-translational modification essential to cell homeostasis. A tightly controlled equilibrium between SUMOylation and deSUMOylation processes is also critical to the neuronal function including neurotransmitter release and synaptic transmission and plasticity. Disruption of the SUMOylation homeostasis in neurons is associated with several neurological disorders. The balance between the SUMOylation and deSUMOylation of substrate proteins is maintained by a group of deSUMOylation enzymes called SENPs. We previously showed that the activation of type 5 metabotropic glutamate receptors (mGlu5R) first triggers a rapid increase in synaptic SUMOylation and then upon the sustained activation of these receptors, the deSUMOylase activity of SENP1 allows the increased synaptic SUMOylation to get back to basal levels. Here, we combined the use of pharmacological tools with subcellular fractionation and live-cell imaging of individual hippocampal dendritic spines to demonstrate that the synaptic accumulation of the deSUMOylation enzyme SENP1 is bidirectionally controlled by the activation of type 1 mGlu1 and mGlu5 receptors. Indeed, the pharmacological blockade of mGlu1R activation during type 1 mGluR stimulation leads to a faster and greater accumulation of SENP1 at synapses indicating that mGlu1R acts as a brake to the mGlu5R-dependent deSUMOylation process at the post-synapse. Altogether, our findings reveal that type 1 mGluRs work in opposition to dynamically tune the homeostasis of SUMOylation at the mammalian synapse.


Assuntos
Receptores de Glutamato Metabotrópico , Sumoilação , Animais , Hipocampo/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo
2.
Cereb Cortex ; 29(8): 3241-3252, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30137253

RESUMO

The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in translational regulation of mRNAs that play key roles in synaptic morphology and plasticity. The functional absence of FMRP causes the fragile X syndrome (FXS), the most common form of inherited intellectual disability and the most common monogenic cause of autism. No effective treatment is available for FXS. We recently identified the Phosphodiesterase 2A (Pde2a) mRNA as a prominent target of FMRP. PDE2A enzymatic activity is increased in the brain of Fmr1-KO mice, a recognized model of FXS, leading to decreased levels of cAMP and cGMP. Here, we pharmacologically inhibited PDE2A in Fmr1-KO mice and observed a rescue both of the maturity of dendritic spines and of the exaggerated hippocampal mGluR-dependent long-term depression. Remarkably, PDE2A blockade rescued the social and communicative deficits of both mouse and rat Fmr1-KO animals. Importantly, chronic inhibition of PDE2A in newborn Fmr1-KO mice followed by a washout interval, resulted in the rescue of the altered social behavior observed in adolescent mice. Altogether, these results reveal the key role of PDE2A in the physiopathology of FXS and suggest that its pharmacological inhibition represents a novel therapeutic approach for FXS.


Assuntos
Comunicação Animal , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Síndrome do Cromossomo X Frágil/enzimologia , Hipocampo/efeitos dos fármacos , Imidazóis/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Comportamento Social , Triazinas/farmacologia , Animais , Animais Recém-Nascidos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Espinhas Dendríticas/patologia , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , Ratos , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo
3.
Cell Mol Life Sci ; 76(15): 3019-3031, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30904951

RESUMO

Sumoylation is a reversible post-translational modification essential to the modulation of neuronal function, including neurotransmitter release and synaptic plasticity. A tightly regulated equilibrium between the sumoylation and desumoylation processes is critical to the brain function and its disruption has been associated with several neurological disorders. This sumoylation/desumoylation balance is governed by the activity of the sole SUMO-conjugating enzyme Ubc9 and a group of desumoylases called SENPs, respectively. We previously demonstrated that the activation of type 5 metabotropic glutamate receptors (mGlu5R) triggers the transient trapping of Ubc9 in dendritic spines, leading to a rapid increase in the overall synaptic sumoylation. However, the mechanisms balancing this increased synaptic sumoylation are still not known. Here, we examined the diffusion properties of the SENP1 enzyme using a combination of advanced biochemical approaches and restricted photobleaching/photoconversion of individual hippocampal spines. We demonstrated that the activation of mGlu5R leads to a time-dependent decrease in the exit rate of SENP1 from dendritic spines. The resulting post-synaptic accumulation of SENP1 restores synaptic sumoylation to initial levels. Altogether, our findings reveal the mGlu5R system as a central activity-dependent mechanism to maintaining the homeostasis of sumoylation at the mammalian synapse.


Assuntos
Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Cisteína Endopeptidases/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/metabolismo , Ratos Wistar , Proteína SUMO-1/metabolismo , Sumoilação , Enzimas de Conjugação de Ubiquitina/metabolismo
4.
Biol Cell ; 105(1): 30-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23066795

RESUMO

BACKGROUND INFORMATION: Sumoylation is a key post-translational modification by which the Small Ubiquitin-like MOdifier (SUMO) polypeptide is covalently attached to specific lysine residues of substrate proteins through a specific enzymatic pathway. Although sumoylation participates in the regulation of nuclear homeostasis, the sumoylation machinery is also expressed outside of the nucleus where little is still known regarding its non-nuclear functions, particularly in the Central Nervous System (CNS). We recently reported that the sumoylation process is developmentally regulated in the rat CNS. RESULTS: Here, we demonstrate that there is an activity-dependent redistribution of endogenous sumoylation enzymes in hippocampal neurons. By performing biochemical and immunocytochemical experiments on primary cultures of rat hippocampal neurons, we show that sumoylation and desumoylation enzymes are differentially redistributed in and out of synapses upon neuronal stimulation. This enzymatic redistribution in response to a neuronal depolarisation results in the transient decrease of sumoylated protein substrates at synapses. CONCLUSIONS: Taken together, our data identify an activity-dependent regulation of the sumoylation machinery in neurons that directly impacts on synaptic sumoylation levels. This process may provide a mechanism for neurons to adapt their physiological responses to changes occurring during neuronal activation.


Assuntos
Sistema Nervoso Central/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Animais , Células Cultivadas , Ratos , Ratos Wistar , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sinapses/metabolismo
5.
J Biol Chem ; 286(44): 37964-37975, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21930700

RESUMO

CD161 is a C-type lectin-like receptor expressed on human natural killer (NK) cells and subsets of T cells. CD161 has been described as an inhibitory receptor that regulates NK cell-mediated cytotoxicity and IFN-γ production. Its role on T cells has remained unclear. Studies have shown that triggering of CD161 enhances NK T cell proliferation and T cell-IFN-γ production while inhibiting TNF-α production by CD8(+) T cells. Lectin-like transcript 1 (LLT1), the ligand of CD161, was found to be expressed on Toll-like receptor (TLR)-activated plasmacytoid and monocyte-derived dendritic cells (DC) and on activated B cells. Using newly developed anti-LLT1 mAbs, we show that LLT1 is not expressed on the surface of circulating B and T lymphocytes, NK cells, monocytes, and dendritic cells but that LLT1 is up-regulated upon activation. Not only TLR-stimulated dendritic cells and B cells but also T cell receptor-activated T cells and activated NK cells up-regulate LLT1. Interestingly, IFN-γ increases LLT1 expression level on antigen-presenting cells. LLT1 is also induced on B cells upon viral infection such as Epstein-Barr virus or HIV infection and in inflamed tonsils. Finally, expression of LLT1 on B cells inhibits NK cell function but costimulates T cell proliferation or IFN-γ production, and coengagement of CD161 with CD3 increases IL-17 secretion. Altogether, our results point toward a role for LLT1/CD161 in modulating immune responses to pathogens.


Assuntos
Membrana Celular/metabolismo , Regulação da Expressão Gênica , Interferon gama/metabolismo , Lectinas Tipo C/biossíntese , Subfamília B de Receptores Semelhantes a Lectina de Células NK/biossíntese , Receptores de Superfície Celular/biossíntese , Animais , Linhagem Celular , Células-Tronco Hematopoéticas/citologia , Humanos , Sistema Imunitário , Interferons/metabolismo , Leucócitos Mononucleares/citologia , Camundongos , Modelos Biológicos , Linfócitos T/metabolismo , Receptores Toll-Like/metabolismo
6.
J Immunol ; 185(4): 2174-81, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20624944

RESUMO

The ability of NK cells to rapidly produce IFN-gamma is an important innate mechanism of resistance to many pathogens including Leishmania major. Molecular and cellular components involved in NK cell activation in vivo are still poorly defined, although a central role for dendritic cells has been described. In this study, we demonstrate that Ag-specific CD4(+) T cells are required to initiate NK cell activation early on in draining lymph nodes of L. major-infected mice. We show that early IFN-gamma secretion by NK cells is controlled by IL-2 and IL-12 and is dependent on CD40/CD40L interaction. These findings suggest that newly primed Ag-specific CD4(+) T cells could directly activate NK cells through the secretion of IL-2 but also indirectly through the regulation of IL-12 secretion by dendritic cells. Our results reveal an unappreciated role for Ag-specific CD4(+) T cells in the initiation of NK cell activation in vivo upon L. major infection and demonstrate bidirectional regulations between innate and adaptive immunity.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Matadoras Naturais/imunologia , Leishmaniose Cutânea/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Leishmania major/imunologia , Leishmaniose Cutânea/parasitologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Dados de Sequência Molecular , Fatores de Tempo
7.
Front Mol Biosci ; 9: 954087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237573

RESUMO

Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull- down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target-specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.

8.
J Biol Chem ; 285(46): 36207-15, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20843815

RESUMO

Lectin-like transcript 1 (LLT1) encoded by CLEC2D gene is a C-type lectin-like molecule interacting with human CD161 (NKR-P1A) receptor expressed by natural killer cells and subsets of T cells. Using RT-PCR and sequencing, we identified several CLEC2D alternatively spliced transcript variants generated by exon skipping. In addition to the reported transcript variants 1 (LLT1) and 2, we identified a novel splice variant 4 and transcripts coding for putative soluble proteins. CLEC2D transcripts were detected primarily in hematopoietic cell lines and were found to be co-induced by the same activation signals. Although very low amounts of putative soluble CLEC2D protein isoforms could be produced by transfectants, CLEC2D isoforms 2 and 4 were efficiently expressed. By contrast to LLT1, which was detected on the cell surface, isoform 2 and 4 remained in the endoplasmic reticulum where they formed homodimers or heterodimers with LLT1. They failed to interact with CD161, leaving LLT1 as the sole ligand for this receptor. CLEC2D therefore uses gene splicing to generate protein isoforms that are structurally distinct and that have different biological activities.


Assuntos
Processamento Alternativo , Lectinas Tipo C/genética , Receptores de Superfície Celular/genética , Transcrição Gênica/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Células Jurkat , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Subfamília B de Receptores Semelhantes a Lectina de Células NK/química , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
9.
Front Mol Neurosci ; 14: 780535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887727

RESUMO

Synapses are highly specialized structures that interconnect neurons to form functional networks dedicated to neuronal communication. During brain development, synapses undergo activity-dependent rearrangements leading to both structural and functional changes. Many molecular processes are involved in this regulation, including post-translational modifications by the Small Ubiquitin-like MOdifier SUMO. To get a wider view of the panel of endogenous synaptic SUMO-modified proteins in the mammalian brain, we combined subcellular fractionation of rat brains at the post-natal day 14 with denaturing immunoprecipitation using SUMO2/3 antibodies and tandem mass spectrometry analysis. Our screening identified 803 candidate SUMO2/3 targets, which represents about 18% of the synaptic proteome. Our dataset includes neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins as well as vesicular trafficking and cytoskeleton-associated proteins, defining SUMO2/3 as a central regulator of the synaptic organization and function.

10.
Nat Commun ; 12(1): 1557, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692361

RESUMO

Fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and the best-described monogenic cause of autism. CGG-repeat expansion in the FMR1 gene leads to FMR1 silencing, loss-of-expression of the Fragile X Mental Retardation Protein (FMRP), and is a common cause of FXS. Missense mutations in the FMR1 gene were also identified in FXS patients, including the recurrent FMRP-R138Q mutation. To investigate the mechanisms underlying FXS caused by this mutation, we generated a knock-in mouse model (Fmr1R138Q) expressing the FMRP-R138Q protein. We demonstrate that, in the hippocampus of the Fmr1R138Q mice, neurons show an increased spine density associated with synaptic ultrastructural defects and increased AMPA receptor-surface expression. Combining biochemical assays, high-resolution imaging, electrophysiological recordings, and behavioural testing, we also show that the R138Q mutation results in impaired hippocampal long-term potentiation and socio-cognitive deficits in mice. These findings reveal the functional impact of the FMRP-R138Q mutation in a mouse model of FXS.


Assuntos
Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Mutação de Sentido Incorreto/fisiologia , Receptores de Glutamato/metabolismo , Animais , Biotinilação , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , Disfunção Cognitiva/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Immunoblotting , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Mutação de Sentido Incorreto/genética , Técnicas de Patch-Clamp , Receptores de Glutamato/genética
11.
Nat Commun ; 9(1): 757, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472612

RESUMO

Fragile X syndrome (FXS) is the most frequent inherited cause of intellectual disability and the best-studied monogenic cause of autism. FXS results from the functional absence of the fragile X mental retardation protein (FMRP) leading to abnormal pruning and consequently to synaptic communication defects. Here we show that FMRP is a substrate of the small ubiquitin-like modifier (SUMO) pathway in the brain and identify its active SUMO sites. We unravel the functional consequences of FMRP sumoylation in neurons by combining molecular replacement strategy, biochemical reconstitution assays with advanced live-cell imaging. We first demonstrate that FMRP sumoylation is promoted by activation of metabotropic glutamate receptors. We then show that this increase in sumoylation controls the homomerization of FMRP within dendritic mRNA granules which, in turn, regulates spine elimination and maturation. Altogether, our findings reveal the sumoylation of FMRP as a critical activity-dependent regulatory mechanism of FMRP-mediated neuronal function.


Assuntos
Espinhas Dendríticas/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Sumoilação , Sequência de Aminoácidos , Animais , Células Cultivadas , Espinhas Dendríticas/genética , Espinhas Dendríticas/patologia , Feminino , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Modelos Neurológicos , Fenótipo , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vesículas Secretórias/metabolismo , Homologia de Sequência de Aminoácidos
12.
Elife ; 62017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28682239

RESUMO

The amyloid precursor protein (APP) harbors physiological roles at synapses and is central to Alzheimer's disease (AD) pathogenesis. Evidence suggests that APP intracellular domain (AICD) could regulate synapse function, but the underlying molecular mechanisms remain unknown. We addressed AICD actions at synapses, per se, combining in vivo AICD expression, ex vivo AICD delivery or APP knock-down by in utero electroporation of shRNAs with whole-cell electrophysiology. We report a critical physiological role of AICD in controlling GluN2B-containing NMDA receptors (NMDARs) at immature excitatory synapses, via a transcription-dependent mechanism. We further show that AICD increase in mature neurons, as reported in AD, alters synaptic NMDAR composition to an immature-like GluN2B-rich profile. This disrupts synaptic signal integration, via over-activation of SK channels, and synapse plasticity, phenotypes rescued by GluN2B antagonism. We provide a new physiological role for AICD, which becomes pathological upon AICD increase in mature neurons. Thus, AICD could contribute to AD synaptic failure.


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/patologia , Neurogênese/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
13.
Oncoimmunology ; 4(8): e1026503, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26405582

RESUMO

Non-Hodgkin's lymphomas (NHLs) are malignant neoplasms which are clinically and biologically diverse. Their incidence is constantly increasing and despite treatment advances, there is a need for novel targeted therapies. Here, we identified Lectin-like transcript 1 (LLT1) as a biomarker of germinal center (GC)-derived B-cell NHLs. LLT1 identifies GC B cells in reactive tonsils and lymph nodes and its expression is maintained in B-cell NHLs which derive from GC, including Burkitt lymphoma (BL), follicular lymphoma (FL), and GC-derived diffuse large B-cell lymphoma (DLBCL). We further show that LLT1 expression by tumors dampens natural killer (NK) cell functions following interaction with its receptor CD161, uncovering a potential immune escape mechanism. Our results pinpoint LLT1 as a novel biomarker of GC-derived B-cell NHLs and as a candidate target for innovative immunotherapies.

14.
Nat Commun ; 5: 5113, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25311713

RESUMO

Sumoylation plays important roles in the modulation of protein function, neurotransmission and plasticity, but the mechanisms regulating this post-translational system in neurons remain largely unknown. Here we demonstrate that the synaptic diffusion of Ubc9, the sole conjugating enzyme of the sumoylation pathway, is regulated by synaptic activity. We use restricted photobleaching/photoconversion of individual hippocampal spines to measure the diffusion properties of Ubc9 and show that it is regulated through an mGlu5R-dependent signalling pathway. Increasing synaptic activity with a GABAA receptor antagonist or directly activating mGlu5R increases the synaptic residency time of Ubc9 via a Gαq/PLC/Ca(2+)/PKC cascade. This activation promotes a transient synaptic trapping of Ubc9 through a PKC phosphorylation-dependent increase of Ubc9 recognition to phosphorylated substrates and consequently leads to the modulation of synaptic sumoylation. Our data demonstrate that Ubc9 diffusion is subject to activity-dependent regulatory processes and provide a mechanism for the dynamic changes in sumoylation occurring during synaptic transmission.


Assuntos
Neurônios/metabolismo , Proteína Quinase C/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/enzimologia , Hipocampo/metabolismo , Camundongos , Neurônios/enzimologia , Proteína Quinase C/genética , Receptor de Glutamato Metabotrópico 5/genética , Sumoilação , Sinapses/enzimologia , Sinapses/genética , Transmissão Sináptica , Enzimas de Conjugação de Ubiquitina/genética
15.
PLoS One ; 7(3): e33757, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438991

RESUMO

BACKGROUND: Small Ubiquitin-like MOdifier protein (SUMO) is a key regulator of nuclear functions but little is known regarding the role of the post-translational modification sumoylation outside of the nucleus, particularly in the Central Nervous System (CNS). METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the expression levels of SUMO-modified substrates as well as the components of the sumoylation machinery are temporally and spatially regulated in the developing rat brain. Interestingly, while the overall sumoylation is decreasing during brain development, there are progressively more SUMO substrates localized at synapses. This increase is correlated with a differential redistribution of the sumoylation machinery into dendritic spines during neuronal maturation. CONCLUSIONS/SIGNIFICANCE: Overall, our data clearly demonstrate that the sumoylation process is developmentally regulated in the brain with high levels of nuclear sumoylation early in the development suggesting a role for this post-translational modification during the synaptogenesis period and a redistribution of the SUMO system towards dendritic spines at a later developmental stage to modulate synaptic protein function.


Assuntos
Sistema Nervoso Central/metabolismo , Sumoilação , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Células Cultivadas , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/crescimento & desenvolvimento , Dendritos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neurogênese/fisiologia , Ratos , Ratos Wistar , Frações Subcelulares/metabolismo , Sinapses/metabolismo , Distribuição Tecidual , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo
16.
J Immunol ; 175(12): 7791-5, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16339512

RESUMO

Human NK cells and subsets of T cells or NKT cells express the orphan C-type lectin receptor CD161 (NKR-P1A) of unknown function. In contrast to rodents that possess several NKR-P1 genes coding for either activating or inhibitory receptors, the nature of signals delivered by the single human NKR-P1A receptor is still to be clarified. In this article, we show that the lectin-like transcript 1 (LLT1) molecule is a ligand for the CD161 receptor. Engagement of CD161 on NK cells with LLT1 expressed on target cells inhibited NK cell-mediated cytotoxicity and IFN-gamma secretion. Conversely, LLT1/CD161 interaction in the presence of a TCR signal enhanced IFN-gamma production by T cells. These findings identify a novel ligand/receptor pair that differentially regulate NK and T cell functions.


Assuntos
Antígenos de Superfície/fisiologia , Lectinas Tipo C/metabolismo , Lectinas Tipo C/fisiologia , Receptores de Superfície Celular/metabolismo , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Complexo CD3/metabolismo , Citotoxicidade Imunológica , Humanos , Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Lectinas Tipo C/imunologia , Ligantes , Subfamília B de Receptores Semelhantes a Lectina de Células NK , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Superfície Celular/imunologia , Transdução de Sinais , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA