Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 67(7): e28284, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333633

RESUMO

BACKGROUND: VTP-50469 is a potent inhibitor of the menin-MLL1 interaction and is implicated in signaling downstream of EWSR1-FLI1. PROCEDURE: VTP-50469 was evaluated against seven Ewing sarcoma (EwS) xenograft models and in vitro against EwS cell lines. RESULTS: VTP-50469 showed limited antitumor activity, statistically significantly slowing tumor progression in four tumor models but with no evidence of tumor regression. In vitro, the IC50 concentration was 10 nM for the mixed lineage leukemia (MLL)-rearranged leukemia cell line MV4;11, but > 3 µM for EwS cell lines. CONCLUSIONS: In contrast to its high level of activity against MLL1-rearranged leukemia xenografts, VTP-50469 shows little activity against EwS models.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Histona-Lisina N-Metiltransferase/efeitos dos fármacos , Proteína de Leucina Linfoide-Mieloide/efeitos dos fármacos , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Sarcoma de Ewing/tratamento farmacológico , Animais , Antineoplásicos/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Pediatria , Proteínas Proto-Oncogênicas/metabolismo , Sarcoma de Ewing/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Pediatr Blood Cancer ; 65(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080385

RESUMO

BACKGROUND: Integrating molecularly targeted agents with cytotoxic drugs used in curative treatment of pediatric cancers is complex. An evaluation was undertaken with the ERBB3/Her3-specific antibody patritumab (P) either alone or with the ERBB1/epidermal growth factor receptor inhibitor erlotinib (E) in combination with standard cytotoxic agents, cisplatin, vincristine, and cyclophosphamide, in pediatric sarcoma xenograft models that express receptors and ligands targeted by these agents. PROCEDURES: Tumor models were selected based upon ERBB3 expression and phosphorylation, and ligand (heregulin) expression. Patritumab, E, or these agents combined was evaluated without or with concomitant cytotoxic agents using procedures developed by the Pediatric Preclinical Testing Program. RESULTS: Full doses of cytotoxic agents were tolerated when combined with P, whereas dose reductions of 25% (vincristine, cisplatin) or 50% (cyclophosphamide) were required when combined with P + E. Patritumab, E alone, or in combination did not significantly inhibit growth of any tumor model, except for Rh18 xenografts (E alone). Patritumab had no single-agent activity and marginally enhanced the activity of vincristine and cisplatin only in Ewing sarcoma ES-4. P + E did not increase the antitumor activity of vincristine or cisplatin, whereas dose-reduced cyclophosphamide was significantly less active than cyclophosphamide administered at its maximum tolerated dose when combined with P + E. CONCLUSIONS: P had no single-agent activity, although it marginally potentiated the activity of vincristine and cisplatin in one of three models studied. However, the addition of E necessitated dose reduction of each cytotoxic agent, abrogating the enhancement observed with P alone.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Cloridrato de Erlotinib/farmacologia , Sarcoma de Ewing/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados , Neoplasias Ósseas/metabolismo , Anticorpos Amplamente Neutralizantes , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Sarcoma de Ewing/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancers (Basel) ; 16(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893160

RESUMO

Malignant rhabdoid tumors (MRTs) are among the most aggressive and treatment-resistant malignancies affecting infants, originating in the kidney, brain, liver, and soft tissues. The 5-year event-free survival rate for these cancers is a mere 20%. In nearly all cases of MRT, the SMARCB1 gene (occasionally SMARCA4)-a pivotal component of the SWI/SNF chromatin remodeling complex-is homozygously deleted, although the precise etiology of these tumors remains unknown. While young patients with localized MRT generally show improved outcomes, especially those who are older and have early-stage disease, the overall prognosis remains poor despite optimal standard treatments. This highlights the urgent need for more effective treatment strategies. We investigated the antitumor activity of a PARP1 inhibitor (talazoparib, TLZ) combined with a DNA alkylating agent (temozolomide, TMZ) in MRT xenograft models. PARP1 is a widely targeted molecule in cancer treatment and, beyond its role in DNA repair, it participates in transcriptional regulation by recruiting chromatin remodeling complexes to modulate DNA accessibility for RNA polymerases. To widen the therapeutic window of the drug combination, we employed PEGylated TLZ (PEG~TLZ), which has been reported to reduce systemic toxicity through slow drug release. Remarkably, our findings indicate that five out of six MRT xenografts exhibited an objective response to PEG~TLZ+TMZ therapy. Significantly, the loss of SMARCB1 was found to confer a protective effect, correlating with higher expression levels of DNA damage and repair proteins in SMARCB1-deficient MRT cells. Additionally, we identified MGMT as a potential biomarker indicative of in vivo MRT response to PEG~TLZ+TMZ therapy. Moreover, our analysis revealed alterations in signaling pathways associated with the observed antitumor efficacy. This study presents a novel and efficacious therapeutic approach for MRT, along with a promising candidate biomarker for predicting tumor response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA