Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(29): 5822-5835, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007336

RESUMO

Liquid marbles are soft matter objects characterised by a liquid droplet enclosed within a hydrophobic particle coating, preventing wetting. This distinctive structure serves as active sites for solid-liquid-gas reactions. However, the impact the chosen coating material has on liquid marble stability, particularly regarding the number of coating layers and material wetting, remains uncertain. There is a need for a modelling approach to predict the overall lifetime considering these coating characteristics. This study reveals that for PTFE liquid marbles evaporating at ambient temperature, smaller coating particles (250 nm) extend their lifetime by forming a multilayered coating. Conversely, using larger particle sizes (200 µm) results in the formation of monolayer liquid marbles with shorter lifetimes than their equivalent naked droplets. Additionally, a higher number of particle layers and a larger contact angle generally enhance the liquid marble's lifetime. For multilayered liquid marbles comprised of smaller particles (250 nm), the particle contact angle is found to have a more significant impact than the number of layers on lifetime extension, whereas the opposite holds true for larger particle sizes (20 µm). A modelling approach using the reactor engineering method for liquid marble evaporation demonstrates excellent agreement with experimental results, yielding an R2 of 0.996. The implementation of this specific model, capable of assessing lifetime across various physical modifications, will enhance our understanding of liquid marble properties before their application in biomedical, microreactor, and green technologies.

2.
Small ; 16(37): e2002802, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32797713

RESUMO

Traditional liquid marbles (LMs), liquid droplets encapsulated by hydrophobic particles at the liquid-gas interface, are restricted by their short lifetime and low heat transfer efficiency. Herein, a new paradigm for LMs immersed in various liquid mediums with massive enhanced heat transfer and spatial recognition is designed; without compromising the structural integrity, the lifetime of the liquid marbles in liquid (LMIL) is extended by ≈1000 times compared to classical LMs in air or naked droplets in organic reagents. The LMIL shows promising reverse structural re-configurability while under external stimuli and maintaining their functionality for a very long period of time (≈weeks). These superior behaviors are further exploited as a miniature reactor with prolonged lifetimes and excellent temperature control, combined with its feasible operation, new opportunities will open up in the advanced chemical and biomedical engineering fields. It is also shown that LMIL can be applied in methylene blue degradation and 3D in-vitro yeast cell cultures. These findings have important implications for real-world use of LMs, with a number of applications in cell culture technology, lab-in-a-drop, polymerization, encapsulation, formulation, and drug delivery.


Assuntos
Carbonato de Cálcio , Azul de Metileno , Interações Hidrofóbicas e Hidrofílicas
3.
Nanotechnology ; 28(4): 045708, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27997362

RESUMO

The performance of solar cells fabricated using Cu(In,Ga)(S,Se)2 nanocrystal (NC) inks synthesized using the hot injection method has yielded efficiencies up to 12% recently. The efficiency of these devices is highly dependent on the chemical composition and crystallographic quality of the NCs. The former has been extensively discussed as it can be easily correlated to the optical properties of the film, but detailed crystallographic structure of these NCs has scarcely been discussed and it can influence both the optical and electrical properties. Hence both chemical composition and crystal structure should be explored for these NCs in order for this material to be further developed for application in thin film solar cells. In this work, a thorough investigation of the composition and crystal structure of CuIn x Ga1-x Se2 NCs synthesized using the hot injection method over the entire composition range (0 ≤ x ≤ 1) has been conducted. Raman spectroscopy of the NCs complements the information derived from x-ray diffraction (XRD) and electron probe microanalysis (EPMA). EPMA, which was carried out for the first time, indicates good controllability of the NC Ga/(In + Ga) ratio using this synthesis method. Raman spectroscopy reveals that CuInSe2 NCs are a mixture of chalcopyrite and sphalerite with disordered cations, whereas CuGaSe2 NCs are purely chalcopyrite. The lattice parameters determined from XRD were found to deviate from those calculated using Vegard's law for all compositions. Hence, it can be deduced that the lattice is distorted in the crystal. The optical and electrochemical band gap of CuIn x Ga1-x Se2 NCs increases as the Ga content increases. The energy band gap deviates from the theoretical values, which could be related to the contribution from cation disordering and strain. These results help to tailor the opto-electrical properties of semiconductors, which inherently depend on the crystalline quality, strain and composition.

4.
J Am Chem Soc ; 138(4): 1273-9, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26771687

RESUMO

CeNbO4.25 is reported to exhibit fast oxygen ion diffusion at moderate temperatures, making this the prototype of a new class of ion conductor with applications in a range of energy generation and storage devices. To date, the mechanism by which this ion transport is achieved has remained obscure, in part due to the long-range commensurately modulated structural motif. Here we show that CeNbO4.25 forms with a unit cell ∼12 times larger than the stoichiometric tetragonal parent phase of CeNbO4 as a result of the helical ordering of Ce(3+) and Ce(4+) ions along z. Interstitial oxygen ion incorporation leads to a cooperative displacement of the surrounding oxygen species, creating interlayer "NbO6" connectivity by extending the oxygen coordination number to 7 and 8. Molecular dynamic simulations suggest that fast ion migration occurs predominantly within the xz plane. It is concluded that the oxide ion diffuses anisotropically, with the major migration mechanism being intralayer; however, when obstructed, oxygen can readily move to an adjacent layer along y via alternate lower energy barrier pathways.

5.
Inorg Chem ; 53(10): 4803-12, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24787953

RESUMO

Apatite-type oxides ([A(I)4][A(II)6][(BO4)6]O2), particularly those of the rare-earth silicate and germanate systems, are among the more promising materials being considered as alternative solid oxide fuel cell electrolytes. Nonstoichiometric lanthanum silicate and germanate apatites display pure ionic conductivities exceeding those of yttria-stabilized zirconia at moderate temperatures (500-700 °C). In this study, mixed Si/Ge-based apatites were prepared by hydrothermal synthesis under mild conditions rather than the conventional solid-state method at high temperatures. Single-phase and highly crystalline nanosized apatite powders were obtained with the morphology changing across the series from spheres for the Si-based end member to hexagonal rods for the Ge-based end member. Powder X-ray and neutron analysis found all of these apatites to be hexagonal (P63/m). Quantitative X-ray microanalysis established the partial (<15 at%) substitution of La(3+) by Na(+) (introduced from the NaOH hydrothermal reagent), which showed a slight preference to enter the A(I) 4f framework position over the A(II) 6h tunnel site. Moreover, retention of hydroxide (OH(-)) was confirmed by IR spectroscopy and thermogravimetric analysis, and these apatites are best described as oxyhydroxyapatites. To prepare dense pellets for conductivity measurements, both conventional heat treatment and spark plasma sintering methods were compared, with the peculiar features of hydrothermally synthesized apatites and the influence of sodium on the ionic conductivity considered.

6.
Small ; 9(17): 2880-6, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23447112

RESUMO

Ultrathin triangular gold nanoframes are synthesized in high yield through selective gold deposition on the edges of triangular silver nanoprisms and subsequent silver etching with mild wet etchants. These ultrathin gold nanoframes are surfactant-free with tailorable ridge thickness from 1.8 to 6 nm and exhibit adjustable and distinct surface plasmon resonance bands in the visible and near-IR region. In comparison, etching of the nanoprism template by galvanic replacement can only create frame structures with much thicker ridges, which have much lower catalytic activity for 4-nitrophenol reduction than the ultrathin gold nanoframes.

7.
Inorg Chem ; 52(4): 1722-8, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23356479

RESUMO

This paper describes the synthesis of ternary chalcogenide Cu(2)SnSe(3) nanocrystals as an alternative solar absorber material to conventional quaternary CuIn(x)Ga(1-x)Se(2). We used the hot coordination solvent method with hexadecylamine as the capping ligand for the first time for this material system. Using a variety of characterization techniques, such as X-ray diffraction, selected area electron diffraction, convergent beam electron diffraction, and Raman spectroscopy, the nanocrystals were found to be monoclinic Cu(2)SnSe(3) with an optical energy band gap of 1.3 eV and have a narrow size distribution. These nanocrystals are shown to be photosensitive in the range of wavelengths corresponding to the solar spectrum, which makes them highly promising as alternative photon absorber materials for photovoltaic applications.

8.
Phys Chem Chem Phys ; 15(18): 6763-8, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23546181

RESUMO

Zinc sulfide (ZnS) thin films have been synthesized by spray pyrolysis at 310 °C using an aqueous solution of zinc chloride (ZnCl2) and thioacetamide (TAA). Highly crystalline films were obtained by applying TAA instead of thiourea (TU) as the sulfur source. X-ray diffraction (XRD) analyses show that the films prepared by TAA contained a wurtzite structure, which is usually a high temperature phase of ZnS. The crystallinity and morphology of the ZnS films appeared to have a strong dependence on the spray rate as well. The asymmetric polar structure of the TAA molecule is proposed to be the intrinsic reason of the formation of highly crystalline ZnS at comparatively low temperatures. The violet and green emissions from photoluminescence (PL) spectroscopy reflected the sulfur and zinc vacancies in the film. Accordingly, the photodetectors fabricated using these films exhibit excellent response to green and red photons of 525 nm and 650 nm respectively, though the band gaps of the materials, estimated from optical absorption spectroscopy, are in the range of 3.5-3.6 eV.

9.
Chemistry ; 18(44): 13994-9, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23008230

RESUMO

Mild-mannered catalyst: a novel procedure to load a MoS(2) co-catalyst onto the surface of silicon under mild-conditions (room temperature, atmospheric pressure, aqueous solution) by a photo-assisted electrodeposition process employing commercially available precursors is reported. The obtained Si-NW@MoS(2) photocathode showed similar catalytic activity for light-driven H(2) generation compared with a Si-NW@Pt photocathode.

10.
Phys Chem Chem Phys ; 14(13): 4614-9, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22354387

RESUMO

The enhanced electron field emission (EFE) properties of high aspect ratio, vertically aligned SiNW-ZnO core-shell arrays are presented. These core-shell arrays are prepared by a thin, controlled, highly crystalline and conformal coating of zinc oxide as shell using the plasma assisted-atomic layer deposition (PA-ALD) route on vertically aligned silicon nanowire arrays core. The core-shell nanostuctures are confirmed by HRTEM imaging along with the individual elemental mapping demonstrating the conformal deposition of 10 nm ZnO on the SiNWs. EFE properties of va-SiNW-ZnO core-shell arrays showed a high emission current density of 51 µA cm(-2) and a low turn on field of 7.6 V µm(-1) (defined at a current density of 1 µA cm(-2)) compared to the 3.2 µA cm(-2) emission current density and 9.1 V µm(-1) turn on field for SiNWs. The field enhancement factor (ß) of 4227 for the devices demonstrates that these core-shell nanowire arrays are excellent field-emitters. Such an enhancement in the field emission originates from the details of the band structure of this peculiar material combination resulting in good electron transport from SiNW to ZnO as evident from the band diagram of the core-shell material. This is further supported by the conducting AFM studies where lowering in threshold voltage by 1 eV confirms the role of ZnO coating in the enhancement of the emission characteristics.


Assuntos
Nanofios/química , Silício/química , Óxido de Zinco/química , Condutividade Elétrica , Elétrons , Tamanho da Partícula , Propriedades de Superfície
11.
Adv Sci (Weinh) ; 9(3): e2102189, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34825783

RESUMO

Sustainable solutions on fabricating and using a face mask to block the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread during this coronavirus pandemic of 2019 (COVID-19) are required as society is directed by the World Health Organization (WHO) toward wearing it, resulting in an increasingly huge demand with over 4 000 000 000 masks used per day globally. Herein, various new mask technologies and advanced materials are reviewed to deal with critical shortages, cross-infection, and secondary transmission risk of masks. A number of countries have used cloth masks and 3D-printed masks as substitutes, whose filtration efficiencies can be improved by using nanofibers or mixing other polymers into them. Since 2020, researchers continue to improve the performance of masks by adding various functionalities, for example using metal nanoparticles and herbal extracts to inactivate pathogens, using graphene to make masks photothermal and superhydrophobic, and using triboelectric nanogenerator (TENG) to prolong mask lifetime. The recent advances in material technology have led to the development of antimicrobial coatings, which are introduced in this review. When incorporated into masks, these advanced materials and technologies can aid in the prevention of secondary transmission of the virus.


Assuntos
COVID-19/prevenção & controle , Máscaras , Pandemias , SARS-CoV-2 , COVID-19/epidemiologia , Humanos
12.
Acta Crystallogr B ; 66(Pt 1): 1-16, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20101078

RESUMO

Certain complex structures are logically regarded as intergrowths of chemically or topologically discrete modules. When the proportions of these components vary systematically a polysomatic series is created, whose construction provides a basis for understanding defects, symmetry alternation and trends in physical properties. Here, we describe the polysomatic family A(5N)B(3N)O(9N + 6)X(Ndelta) (2 < or = N < or = infinity) that is built by condensing N apatite modules (A(5)B(3)O(18)X(delta)) in configurations to create B(n)O(3n + 1) (1 < or = n < or = infinity) tetrahedral chains. Hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] typifies a widely studied polysome where N = 2 and the tetrahedra are isolated in A(10)(BO(4))(6)X(2) compounds, but N = 3 A(15)(B(2)O(7))(3)(BO(4))(3)X(3) (ganomalite) and N = 4 A(20)(B(2)O(7))(6)X(4) (nasonite) are also known, with the X site untenanted or partially occupied as required for charge balance. The apatite modules, while topologically identical, are often compositionally or symmetrically distinct, and an infinite number of polysomes is feasible, generally with the restriction being that an A:B = 5:3 cation ratio be maintained. The end-members are the N = 2 polysome with all tetrahedra separated, and N = infinity, in which the hypothetical compound A(5)B(3)O(9)X contains infinite, corner-connected tetrahedral strings. The principal characteristics of a polysome are summarized using the nomenclature apatite-(A B X)-NS, where A/B/X are the most abundant species in these sites, N is the number of modules in the crystallographic repeat, and S is the symmetry symbol (usually H, T, M or A). This article examines the state-of-the-art in polysomatic apatite synthesis and crystallochemical design. It also presents X-ray and neutron powder diffraction investigations for several polysome chemical series and examines the prevalence of stacking disorder by electron microscopy. These insights into the structure-building principles of apatite polysomes will guide their development as functional materials.

13.
Dalton Trans ; 48(5): 1633-1646, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30534773

RESUMO

The crystal structure of a (3 + 2)D incommensurate modulated LaNb0.88W0.12O4.06 phase, a novel oxygen ionic conductor, is refined using a combination of synchrotron X-ray diffraction and electron diffraction data. The superspace group I2/c(α10γ1)00(α20γ2)00 (a = 5.4131(1) Å, b = 11.6432(2) Å, c = 5.2963(1) Å, ß = 91.540(1)°, q1 = 0.2847(5)a* + 0.1098(9)c* and q2=-0.1266(9)a* + 0.2953(1)c*) was chosen for the refinement. Similar to other scheelite type modulated structures, the modulation of LaNb0.88W0.12O4.06 stems from the cation occupancy ordering in the xz plane. To facilitate the modulated cation sub-lattice, and to compensate for the difference in their size and charge, the B site polyhedra are distorted by stretching the B-O bond lengths. Consequently, an extension in the B site coordination number from 6 to 8 is observed in the modulated phase. An interconnected 3D network of BOx polyhedra, similar to that of modulated CeNbO4.25, is obtained as a result of the structure modulation, which is not available in the unmodulated parent structure. Tracer diffusivity measurements indicate that the composition is an oxygen ion conductor, which relies on an intersticalcy conduction mechanism. Oxygen tracer diffusivity of 2.46 × 10-9 cm2 s-1, at 750 °C is reported.

14.
ACS Appl Mater Interfaces ; 9(35): 29633-29642, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28820933

RESUMO

Acceptor-doped LaNbO4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO4 (La0.99Sr0.01NbO4-d, denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO4, has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D216O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

15.
Sci Rep ; 7: 43721, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252044

RESUMO

The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10-10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10-6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

16.
Nanoscale Res Lett ; 9(1): 14, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24410851

RESUMO

TiO2 hierarchical nanostructures with secondary growth have been successfully synthesized on electrospun nanofibers via surfactant-free hydrothermal route. The effect of hydrothermal reaction time on the secondary nanostructures has been studied. The synthesized nanostructures comprise electrospun nanofibers which are polycrystalline with anatase phase and have single crystalline, rutile TiO2 nanorod-like structures growing on them. These secondary nanostructures have a preferential growth direction [110]. UV-vis spectroscopy measurements point to better dye loading capability and incident photon to current conversion efficiency spectra show enhanced light harvesting of the synthesized hierarchical structures. Concomitantly, the dye molecules act as spacers between the conduction band electrons of TiO2 and holes in the hole transporting medium, i.e., spiro-OMeTAD and thus enhance open circuit voltage. The charge transport and recombination effects are characterized by electrochemical impedance spectroscopy measurements. As a result of improved light harvesting, dye loading, and reduced recombination losses, the hierarchical nanofibers yield 2.14% electrochemical conversion efficiency which is 50% higher than the efficiency obtained by plain nanofibers.

17.
ACS Appl Mater Interfaces ; 5(12): 5461-7, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23688028

RESUMO

The structural and electrochemical properties of the mixed transition metallic oxides Zn1-xMnxFe2O4 nanofibers, which crystallize in a cubic spinel AFe2O4 structure, are investigated systematically with a gradual substitution of Zn by Mn. The crystal structural information studied by X-ray diffraction (XRD) depicts the formation of single phase spinel structure, while electron-dispersive X-ray spectroscopy (EDS) reveals the stoichiometric ratio between Zn and Mn. ZnFe2O4 exhibits a good capacity of ~532 mAh g(-1) at 50th cycle through the interbeneficial conversion reaction and alloy-dealloy mechanism, with a first discharge working voltage of ~0.83 V. Subsequently, the characteristic redox potential of each spinel is gradually reduced with the replacement of Mn. Furthermore, Zn0.3Mn0.7Fe2O4 demonstrates the highest capacity of ~612 mA h g(-1) at 50th cycle among the solid solution series. Ex situ characterization by high-resolution transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS) is conducted to study the participation of Mn in the battery performance. This report represents an example of how the electrochemical performance could be flexibly adjusted by tuning the ratio of transition metals within the spinel.

18.
Adv Mater ; 25(18): 2567-72, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23447427

RESUMO

Uniform single-crystalline quaternary sulphide nanoring photocatalysts are synthesized via the copper-ion-induced Kirkendall effect and is followed by a cation exchange reaction. The obtained Cu(2+)-doped ZnIn(2)S(4) nanorings show highly preserved morphology, and demonstrate high visible-light-driven photocatalytic activity for H(2) evolution in water splitting.


Assuntos
Ligas/química , Hidrogênio/química , Nanotecnologia/métodos , Processos Fotoquímicos , Sulfetos/química , Catálise
19.
Nanoscale ; 5(4): 1479-82, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23334494

RESUMO

We reported herein a facile and scalable preparation process for MoS(2)-decorated Zn(x)Cd(1-x)S hybrid photocatalysts for hydrogen generation. Zn(x)Cd(1-x)S nanopowder was first prepared from commercially available precursors employing a solution based process. MoS(2) hydrogen evolution reaction catalyst was then loaded onto the Zn(x)Cd(1-x)S nanopowder via a photo-assisted deposition process which employed mild conditions (room temperature, atmospheric pressure and visible light illumination). Thus, this process represents an important advantage in the large scale production of semiconductor/MoS(2) hybrid photocatalysts in comparison to the conventional method relying on thermal decomposition of (NH(4))(2)[MoS(4)] precursor at high temperature and under H(2)S pressure. The best Zn(0.2)Cd(0.8)S/MoS(2) 3% showed two hundred-and-ten times (210 times) faster hydrogen generation rate on visible light illumination compared with that obtained for un-treated Zn(0.2)Cd(0.8)S. That was the most impressive catalytic enhancement ever recorded for a semiconductor photocatalyst decorated with a noble metal free electrocatalyst.


Assuntos
Compostos de Cádmio/química , Hidrogênio/química , Hidrogênio/isolamento & purificação , Molibdênio/química , Nanopartículas/química , Sulfetos/química , Compostos de Zinco/química , Compostos de Cádmio/efeitos da radiação , Catálise , Luz , Teste de Materiais , Molibdênio/efeitos da radiação , Nanopartículas/efeitos da radiação , Doses de Radiação , Sulfetos/efeitos da radiação , Propriedades de Superfície/efeitos da radiação , Compostos de Zinco/efeitos da radiação
20.
Chem Commun (Camb) ; 49(47): 5351-3, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23545849

RESUMO

Chemical welding of oppositely charged dissimilar metal chalcogenide nanomaterials is reported to produce a quaternary metal chalcogenide. CuSe and In2S3 nanoparticles were synthesized with opposite surface charges by stabilizing with polyacrylic acid and polydiallyldimethylammonium chloride. Upon mixing these nanoparticles at room temperature, the electrostatic attraction induced coalescence of these nanoparticles and led to the formation of CuInSxSe1-x nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA