Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Amino Acids ; 53(2): 313-317, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33576904

RESUMO

The effects of ΔPb-CATH4, a cathelicidin derived from Python bivittatus, were evaluated against Staphylococcus aureus-infected wounds in mice. These effects were comparable to those of classical antibiotics. ΔPb-CATH4 was resistant to bacterial protease but not to porcine trypsin. A reduction in the level of inflammatory cytokines and an increase in the migration of immune cells was observed in vitro. Thus, ΔPb-CATH4 can promote wound healing by controlling infections including those caused by multidrug-resistant bacteria via its immunomodulatory effects.


Assuntos
Catelicidinas/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico , Animais , Boidae , Catelicidinas/química , Humanos , Camundongos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/fisiopatologia , Staphylococcus aureus/fisiologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/fisiopatologia
2.
Antibiotics (Basel) ; 11(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892379

RESUMO

Cathelicidins are potent antimicrobial peptides with broad spectrum antimicrobial activity in many vertebrates and an important component of the innate immune system. However, our understanding of the genetic variations and biological characteristics of bat cathelicidins is limited. In this study, we performed genome-level analysis of the antimicrobial peptide cathelicidins from seven bat species in the six families, listed 19 cathelicidin-like sequences, and showed that the number of functional cathelicidin genes differed among bat species. Based on the identified biochemical characteristics of bat cathelicidins, three cathelicidins, HA-CATH (from Hipposideros armiger), ML-CATH (from Myotis lucifugus), and PD-CATH (from Phyllostomus discolor), with clear antimicrobial signatures were chemically synthesized and evaluated antimicrobial activity. HA-CATH showed narrow-spectrum antibacterial activity against a panel of 12 reference bacteria, comprising 6 Gram-negative and 6 Gram-positive strains. However, ML-CATH and PD-CATH showed potent antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria with minimum inhibitory concentration (MIC) of 1 and 3 µg/mL, respectively, against Staphylococcus aureus. ML-CATH and PD-CATH also showed antifungal activities against Candida albicans and Cryptococcus cuniculi with MIC of 5 to 40 µg/mL, respectively, and 80% inhibition of the metabolism of Mucor hiemalis hyphae at 80 µg/mL, while displaying minimal cytotoxicity to HaCaT cells. Taken together, although the spectrum and efficacy of bat cathelicidins were species-dependent, the antimicrobial activity of ML-CATH and PD-CATH was comparable to that of other highly active cathelicidins in vertebrates while having negligible cytotoxicity to mammalian cells. ML-CATH and PD-CATH can be exploited as promising candidates for the development of antimicrobial therapeutics.

3.
J Microbiol Methods ; 193: 106396, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34921868

RESUMO

Currently, several methods are available for the isolation of bacterial DNA and RNA. However, the diversity and complexity of cell envelope structures limit their efficiency depending on the target bacterial species. In this study, we compared the differences in yield and integrity of RNA prepared from four gram-negative and six gram-positive bacterial species using bead-beating, bacteriolytic protein, and PMAP36-vortexing methods. Similarly, we also compared the efficiency of DNA extraction from Staphylococcus aureus. Physical disruption of bacterial cells showed versatility in breaking cells against all tested species; however, a decrease in the integrity of isolated DNA and RNA was observed. Among membranolytic proteins, PMAP36 showed the most promising results, in terms of both the yield and integrity of the prepared nucleic acids. Our results show that each method has inherent advantages and disadvantages depending on its application. Therefore, the characteristics of each method and target species should be considered before the extraction of bacterial DNA and RNA.


Assuntos
Bactérias , Bactérias Gram-Positivas , Bactérias/genética , DNA Bacteriano/genética , Bactérias Gram-Positivas/genética , RNA Bacteriano , Staphylococcus aureus/genética
4.
IET Nanobiotechnol ; 11(8): 917-928, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29155390

RESUMO

Tea leaves have economic importance in preparation of the popular beverage of the world "tea". Bird's eye spot disease of tea leaves creates significant revenue loss in tea trade of many tea plant cultivating countries. Management of this disease by silver (AgNps) and copper (CuNps) nanoparticles that are biosynthesised by efficient antagonists was studied. The biocontrol agents like Pseudomonas fluorescens, Trichoderma atroviride and Streptomyces sannanensis were evaluated for nanoparticle synthesis against Cercospora theae isolates namely KC10, MC24 and VC38. Initially, the freshly prepared extracellular AgNps showed high disease control (59.42 - 79.76%), but the stability of antagonistic property in stored nanoparticles were significantly high in CuNps (58.71 - 73.81%). Greenhouse studies on various treatments imposed also showed reduced disease incidence percentage of 13.4, 7.57 and 10.11% when treated with CuNps synthesized by P. fluorescens, T. atroviride and S. sannanensis respectively. Various treatment schedule in fields suggested the use of Bionanocopper@1.5 ppm for highest yield (3743 kg/ha) with 66.1% disease prevention. The results suggest the use of biosynthesised CuNps using Streptomyces sannanensis for controlling the tea plant pathogens causing foliar disease with higher stability in releasing the antagonistic activity during sporadic disease incidence of bird's eye spot disease in tea plants.


Assuntos
Camellia sinensis/microbiologia , Cobre/química , Nanopartículas Metálicas/administração & dosagem , Micoses/prevenção & controle , Doenças das Plantas/prevenção & controle , Folhas de Planta , Prata/química , Nanopartículas Metálicas/química , Micoses/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA