Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 28(33): e202200751, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35357732

RESUMO

Bismuth containing hybrid molecular ferroelectrics are receiving tremendous attention in recent years owing to their stable and non-toxic composition. However, these perovskite-like structures are primarily limited to ammonium cations. Herein, we report a new phosphonium based discrete perovskite-like hybrid ferroelectric with a formula [Me(Ph)3 P]3 [Bi2 Br9 ] (MTPBB) and its mechanical energy harvesting capability. The Polarization-Electric field (P-E) measurements resulted in a well-defined ferroelectric hysteresis loop with a remnant polarization value of 2.1 µC cm-2 . Piezoresponse force microscopy experiments enabled visualization of the ferroelectric domain structure and evaluation of the piezoelectric strain coefficient (d33 ) for an MTPBB single crystal and thin film sample. Furthermore, flexible devices incorporating MTPBB in polydimethylsiloxane (PDMS) matrix at various concentrations were fabricated and explored for their mechanical energy harvesting properties. The champion device with 20 wt % of MTPBB in PDMS rendered a maximum peak-to-peak open-circuit voltage of 22.9 V and a maximum power density of 7 µW cm-2 at an optimal load of 4 MΩ. Moreover, the potential of MTPBB-based devices in low power electronics was demonstrated by storing the harvested energy in various electrolytic capacitors.

2.
Angew Chem Int Ed Engl ; 59(26): 10368-10373, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32207201

RESUMO

Organic-inorganic hybrid ferroelectrics are an exciting class of molecular materials with promising applications in the area of energy and electronics. The synthesis, ferroelectric and piezoelectric energy harvesting behavior of a 3d metal ion-containing A4 BX6 type organic-inorganic hybrid salt [Ph3 MeP]4 [Ni(NCS)6 ] (1) is now presented. P-E hysteresis loop studies on 1 show a remnant ferroelectric polarization value of 18.71 µC cm-2 , at room temperature. Composite thermoplastic polyurethane (TPU) devices with 5, 10, 15 and 20 wt % compositions of 1 were prepared and employed for piezoelectric energy harvesting studies. A maximum output voltage of 19.29 V and a calculated power density value of 2.51 mW cm-3 were observed for the 15 wt % 1-TPU device. The capacitor charging experiments on the 15 wt % 1-TPU composite device shows an excellent energy storage performance with the highest stored energies and measured charges of 198.8 µJ and 600 µC, respectively.

3.
Chemistry ; 24(55): 14639-14643, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063810

RESUMO

Designing molecular crystals with switchable dipoles for ferroelectric applications is challenging and often serendipitous. Herein, we show a systematic approach toward hierarchical 1D, 2D and 3D frameworks that are assembled through successive linkage of metal-organic cages [Cu6 (H2 O)12 (TPTA)8 ]12+ with chloride ions. Their ferroelectric properties are due to the displacement of channel-bound nitrate counterions and solvated water molecules relative to the framework of cages. Ferroelectric measurements of crystals of discrete and 1D-framework assemblies showed axial ferroelectric anisotropy with high remnant polarisation. Both, the reversible formation of cage-connected networks and the observation of ferroelectric anisotropic behaviour are rare among metal-ligand cage assemblies.

4.
Angew Chem Int Ed Engl ; 57(29): 9054-9058, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29851252

RESUMO

A new binary organic salt diphenyl diisopropylamino phosphonium hexaflurophosphate (DPDP⋅PF6 ) was shown to exhibit a good ferroelectric response and employed for mechanical energy harvesting application. The phosphonium salt crystallizes in the monoclinic noncentrosymmetric space group Cc and exhibits an H-bonded 1D chain structure due to N-H⋅⋅⋅F interactions. Ferroelectric measurements on the single crystals of DPDP⋅PF6 gave a well-saturated rectangular hysteresis loop with a remnant (Pr ) polarization value of 6 µC cm-2 . Further, composite devices based on polydimethylsiloxane (PDMS) films for various weight percentages (3, 5, 7, 10 and 20 wt %) of DPDP⋅PF6 were prepared and examined for power generation by using an impact test setup. A maximum output peak-to-peak voltage (VPP ) of 8.5 V and an output peak-to-peak current (IPP ) of 0.5 µA was obtained for the non-poled composite film with 10 wt % of DPDP⋅PF6 . These results show the efficacy of organic ferroelectric substances as potential micropower generators.

5.
ACS Appl Mater Interfaces ; 16(20): 26406-26416, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38725337

RESUMO

Ionic cocrystals with hydrogen bonding can form exciting materials with enhanced optical and electronic properties. We present a highly moisture-stable ammonium salt cocrystal [CH3C6H4CH(CH3)NH2][CH3C6H4CH(CH3)NH3][PF6] ((p-TEA)(p-TEAH)·PF6) crystallizing in the polar monoclinic C2 space group. The asymmetry in (p-TEA)(p-TEAH)·PF6 was induced by its chiral substituents, while the polar order and structural stability were achieved by using the octahedral PF6- anion and the consequent formation of salt cocrystal. The ferroelectric properties of (p-TEA)(p-TEAH)·PF6 were confirmed through P-E loop measurements. Piezoresponse force microscopy (PFM) enabled the visualization of its domain structure with characteristic "butterfly" and hysteresis loops associated with ferro- and piezoelectric properties. Notably, (p-TEA)(p-TEAH)·PF6 exhibits a large electrostrictive coefficient (Q33) value of 2.02 m4 C-2, higher than those found for ceramic-based materials and comparable to that of polyvinylidene difluoride. Furthermore, the composite films of (p-TEA)(p-TEAH)·PF6 with polycaprolactone (PCL) polymer and its gyroid-shaped 3D-printed composite scaled-up device, 3DP-Gy, were prepared and evaluated for piezoelectric energy-harvesting functionality. A high output voltage of 22.8 V and a power density of 118.5 µW cm-3 have been recorded for the 3DP-Gy device. Remarkably, no loss in voltage outputs was observed for the (p-TEA)(p-TEAH)·PF6 devices even after exposure to 99% relative humidity, showcasing their utility under extremely humid conditions.

6.
Chem Commun (Camb) ; 59(20): 2919-2922, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36799201

RESUMO

The ferroelectric behaviour of an octahedral cage [[Ni6(H2O)12(TPTA)8]·(NO3)12·36H2O] (1) exhibiting high remnant polarization of 25.31 µC cm-2 is discovered. For the first time, clear domain structures and the characteristic electromechanical responses are demonstrated using piezoresponsive force microscopy for a thin film of 1. Owing to its mechanical energy conversion capability, polymer composites of 1 were employed as efficient piezoelectric nanogenerators.

7.
Mater Horiz ; 10(8): 3153-3161, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37227322

RESUMO

Three-dimensional printing (3DP) is an emerging technology to fabricate complex architectures, necessary to realize state-of-the-art flexible and wearable electronic devices. In this regard, top-performing devices containing organic ferro- and piezoelectric compounds are desired to circumvent significant shortcomings of conventional piezoceramics, e.g. toxicity and high-temperature device processibility. Herein, we report on a 3D-printed composite of a chiral ferroelectric organic salt {[Me3CCH(Me)NH3][BF4]} (1) with a biodegradable polycaprolactone (PCL) polymer that serves as a highly efficient piezoelectric nanogenerator (PENG). The ferroelectric property of 1 originates from its polar tetragonal space group P42, verified by P-E loop measurements. The ferroelectric domain characteristics of 1 were further probed by piezoresponse force microscopy (PFM), which gave characteristic 'butterfly' and hysteresis loops. The PFM amplitude vs. drive voltage measurements gave a relatively high magnitude of the converse piezoelectric coefficient for 1. PCL polymer composites with various weight percentages (wt%) of 1 were prepared and subjected to piezoelectric energy harvesting tests, which gave a maximum open-circuit voltage of 36.2 V and a power density of 48.1 µW cm-2 for the 10 wt% 1-PCL champion device. Furthermore, a gyroid-shaped 3D-printed 10 wt% 1-PCL composite was fabricated to test its practical utility, which gave an excellent output voltage of 41 V and a power density of 56.8 µW cm-2. These studies promise the potential of simple organic compounds for building PENG devices using advanced manufacturing technologies.

8.
Chem Asian J ; 15(20): 3275-3280, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32776701

RESUMO

Supramolecular systems hold great potential as ferroelectric materials because they are easy to prepare and do not require toxic and environmentally damaging elements. However, directing the self-assembly process of a supramolecular array to yield polarizable solids is still challenging. Here, we describe induced ferroelectricity in a supramolecular framework of metal-organic cages that are supported by a flexible tripodal ligand (NHCH2 -(3-Py))3 PO (TPPA). Ferroelectric responses on the discrete cage [Cu6 (H2 O)12 (TPPA)8 ](NO3 )12 ⋅ 45H2 O (1) and its 2D-connected framework [{Cu6 Cl4 (H2 O)6 (TPPA)8 }(NO3 )8 ⋅ 60H2 O]n (2) yielded well-resolved rectangular hysteresis loops at room temperature with remnant polarization values of 27.27 and 29.09 µC/cm2 , respectively. Thermal hysteresis measurements (THM) and capacitance-voltage (C-V) plots further corroborate the ferroelectric behavior in these compounds. The polarization in them is due to the displacements of solvated molecules and nitrate ions in the pockets of these frameworks.

9.
Dalton Trans ; 48(21): 7331-7336, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30839960

RESUMO

Molecular ferroelectric materials are an exciting class of materials for potential applications in energy and electronics. Herein, we report examples of hydrogen-bonded binary salts of diphenyl diisopropylamino phosphonium halides [Ph2(iPrNH)2P]·X [DPDP·X, X = Cl, Br, I] which show dielectric, piezoelectric and NLO properties and some potentially ferroelectric attributes at room temperature. The phosphonium bromide salt was prepared by bromination of the phosphine precursor Ph2PCl and its subsequent treatment with isopropyl amine. The chloride and iodide salts were synthesized by the halogen exchange reaction of the bromide salt. The variable temperature single crystal X-ray analysis indicates the retention of the polar non-centrosymmetric phase of these materials for a wide range of temperatures from 100 to 400 K and above. All these assemblies were shown to exhibit 1D H-bonded chain structures along the crystallographic b-axis. The P-E loop measurements of these salts gave curves similar to those of non-linear leaky dielectric materials. However, the vertical piezoresponse force microscopy (V-PFM) analyses showed the existence of polarizable domain inversions indicating the possibility of ferroelectric behaviour in these materials. The temperature dependent dielectric measurements on these salts support the absence of phase transition temperatures in these assemblies. Also, bias-dependent PFM studies reveal their piezoelectric nature as the obtained converse piezoelectric coefficients are consistent with the d33 values obtained by the direct quasi-static methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA