Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(3): e2103138, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761508

RESUMO

Apolipoproteins are an important class of proteins because they provide a so-called stealth effect to nanoparticles. The stealth effect on nanocarriers leads to a reduced unspecific uptake into immune cells and thereby to a prolonged blood circulation time. Herein, a novel strategy to bind apolipoproteins specifically on nanoparticles by adjusting the temperature during their incubation in human plasma is presented. This specific binding, in turn, allows a control of the stealth behavior of the nanoparticles. Nanoparticles with a well-defined poly(N-isopropylacrylamide) shell are prepared, displaying a reversible change of hydrophobicity at a temperature around 32 °C. It is shown by label-free quantitative liquid chromatography-mass spectrometry that the nanoparticles are largely enriched with apolipoprotein J (clusterin) at 25 °C while they are enriched with apolipoprotein A1 and apolipoprotein E at 37 °C. The temperature-dependent protein binding is found to significantly influence the uptake of the nanoparticles by RAW264.7 and HeLa cells. The findings imply that the functionalization of nanoparticles with temperature-responsive materials is a suitable method for imparting stealth properties to nanocarriers for drug-delivery.


Assuntos
Nanopartículas , Coroa de Proteína , Apolipoproteínas , Células HeLa , Humanos , Nanopartículas/química , Coroa de Proteína/química , Temperatura
2.
Heliyon ; 10(2): e24444, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293411

RESUMO

The polysaccharides found in Caulerpa lentillifera (sea grape algae) are potentially an important bioactive resource. This study makes use of RSM (response surface methodology) to determine the optimal conditions for the extraction of valuable SGP (sea grape polysaccharides). The findings indicated that a water/raw material ratio of 10:1 mL/g, temperature of 90 °C, and extraction time of 45 min would maximize the yield, with experimentation achieving a yield of 21.576 %. After undergoing purification through DEAE-52 cellulose and Sephacryl S-100 column chromatography, three distinct fractions were obtained, namely SGP11, SGP21, and SGP31, each possessing average molecular weights of 38.24 kDa, 30.13 kDa, and 30.65 kDa, respectively. Following characterization, the fractions were shown to comprise glucose, galacturonic acid, xylose, and mannose, while the sulfate content was in the range of 12.2-21.8 %. Using Fourier transform infrared spectroscopy (FT-IR) it was possible to confirm with absolute certainty the sulfate polysaccharide attributes of SGP11, SGP21, and SGP31. NMR (nuclear magnetic resonance) findings made it clear that SGP11 exhibited α-glycosidic configurations, while the configurations of SGP21 and SGP31 were instead ß-glycosidic. The in vitro antioxidant assays which were conducted revealed that each of the fractions was able to demonstrate detectable scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cations. All fractions were also found to exhibit the capacity to scavenge NO radicals in a dose-dependent manner. SGP11, SGP21, and SGP31 were also able to display cellular antioxidant activity (CAA) against the human adenocarcinoma colon (Caco-2) cell line when oxidative damage was induced. The concentration levels were found to govern the extent of such activity. Moreover, purified SGP were found to exert strong inhibitory effects upon glycation, with the responses dependent upon dosage, thus confirming the potential for SGP to find a role as a natural resource for the production of polysaccharide-based antioxidant drugs, or products to promote improved health.

3.
Colloids Surf B Biointerfaces ; 183: 110434, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437607

RESUMO

Shellac is a biomaterial obtained from secretion of lac insects. Nanoparticles based on shellac are prepared by nanoprecipitation and miniemulsion techniques. The corrosion inhibitor 2-mercaptobenzothiazole can be efficiently encapsulated in nanoparticles. Release kinetics of the inhibitor from the nanocarriers is controlled by pH of the surrounding environment as well as the introduction of other biopolymers such as lignin and zein. To overcome the low colloidal stability of shellac nanoparticles in saline conditions, shellac is conjugated with poly(ethylene glycol) moieties. After PEGylation, nanoparticles with higher critical aggregation concentration are obtained and provide release kinetics of 2-mercaptobenzothiazole similar to shellac nanoparticles.


Assuntos
Coloides/química , Nanopartículas/química , Polietilenoglicóis/química , Resinas Vegetais/química , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Benzotiazóis/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Lignina/química , Zeína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA