Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Bioorg Chem ; 151: 107646, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032408

RESUMO

Since the discovery of antimicrobial agents, the misuse of antibiotics has led to the emergence of bacterial strains resistant to both antibiotics and common disinfectants like quaternary ammonium compounds (QACs). A new class, 'gemini' QACs, which contain two polar heads, has shown promise. Octenidine (OCT), a representative of this group, is effective against resistant microorganisms but has limitations such as low solubility and high cytotoxicity. In this study, we developed 16 novel OCT derivatives. These compounds were subjected to in silico screening to predict their membrane permeation. Testing against nosocomial bacterial strains (G+ and G-) and their biofilms revealed that most compounds were highly effective against G+ bacteria, while compounds 7, 8, and 10-12 were effective against G- bacteria. Notably, compounds 6-8 were significantly more effective than OCT and BAC standards across the bacterial panel. Compound 12 stood out due to its low cytotoxicity and broad-spectrum antimicrobial activity, comparable to OCT. It also demonstrated impressive antifungal activity. Compound 1 was highly selective to fungi and four times more effective than OCT without its cytotoxicity. Several compounds, including 4, 6, 8, 9, 10, and 12, showed strong virucidal activity against murine cytomegalovirus and herpes simplex virus 1. In conclusion, these gemini QACs, especially compound 12, offer a promising alternative to current disinfectants, addressing emerging resistances with their enhanced antimicrobial, antifungal, and virucidal properties.

2.
Arch Toxicol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789714

RESUMO

Six novel brominated bis-pyridinium oximes were designed and synthesized to increase their nucleophilicity and reactivation ability of phosphorylated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Their pKa was valuably found lower to parent non-halogenated oximes. Stability tests showed that novel brominated oximes were stable in water, but the stability of di-brominated oximes was decreased in buffer solution and their degradation products were prepared and characterized. The reactivation screening of brominated oximes was tested on AChE and BChE inhibited by organophosphorus surrogates. Two mono-brominated oximes reactivated AChE comparably to non-halogenated analogues, which was further confirmed by reactivation kinetics. The acute toxicity of two selected brominated oximes was similar to commercially available oxime reactivators and the most promising brominated oxime was tested in vivo on sarin- and VX-poisoned rats. This brominated oxime showed interesting CNS distribution and significant reactivation effectiveness in blood. The same oxime resulted with the best protective index for VX-poisoned rats.

3.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298087

RESUMO

Alzheimer's disease (AD) is a complex disease with an unknown etiology. Available treatments, limited to cholinesterase inhibitors and N-methyl-d-aspartate receptor (NMDAR) antagonists, provide symptomatic relief only. As single-target therapies have not proven effective, rational specific-targeted combination into a single molecule represents a more promising approach for treating AD, and is expected to yield greater benefits in alleviating symptoms and slowing disease progression. In the present study, we designed, synthesized, and biologically evaluated 24 novel N-methylpropargylamino-quinazoline derivatives. Initially, compounds were thoroughly inspected by in silico techniques determining their oral and CNS availabilities. We tested, in vitro, the compounds' effects on cholinesterases and monoamine oxidase A/B (MAO-A/B), as well as their impacts on NMDAR antagonism, dehydrogenase activity, and glutathione levels. In addition, we inspected selected compounds for their cytotoxicity on undifferentiated and differentiated neuroblastoma SH-SY5Y cells. We collectively highlighted II-6h as the best candidate endowed with a selective MAO-B inhibition profile, NMDAR antagonism, an acceptable cytotoxicity profile, and the potential to permeate through BBB. The structure-guided drug design strategy applied in this study imposed a novel concept for rational drug discovery and enhances our understanding on the development of novel therapeutic agents for treating AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/uso terapêutico , Neuroblastoma/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Monoaminoxidase/metabolismo , Desenho de Fármacos , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade
4.
J Enzyme Inhib Med Chem ; 37(1): 760-767, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35193448

RESUMO

The organophosphorus antidotes, so-called oximes, are able to restore the enzymatic function of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) via cleavage of organophosphate from the active site of the phosphylated enzyme. In this work, the charged pyridinium oximes containing thiocarboxamide moiety were designed, prepared and tested. Their stability and pKa properties were found to be analogous to parent carboxamides (K027, K048 and K203). The inhibitory ability of thiocarboxamides was found in low µM levels for AChE and high µM levels for BChE. Their reactivation properties were screened on human recombinant AChE and BChE inhibited by nerve agent surrogates and paraoxon. One thiocarboxamide was able to effectively restore function of NEMP- and NEDPA-AChE, whereas two thiocarboxamides were able to reactivate BChE inhibited by all tested organophosphates. These results were confirmed by reactivation kinetics, where thiocarboxamides were proved to be effective, but less potent reactivators if compared to carboxamides.


Assuntos
Inibidores da Colinesterase/farmacologia , Organofosfatos/farmacologia , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Compostos de Sulfidrila/farmacologia , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Organofosfatos/síntese química , Organofosfatos/química , Oximas/síntese química , Oximas/química , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química
5.
Vet Res ; 52(1): 143, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895342

RESUMO

Haemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H. contortus. The potential hepatotoxicity of SRT was tested in sheep, a common H. contortus host. In addition, the main metabolic pathways of SRT in H. contortus and the ovine liver were identified. While no effect of SRT on H. contortus egg hatching was observed, SRT was found to significantly decrease the viability of H. contortus adults in drug-sensitive and resistant strains, with its effect comparable to the commonly used anthelmintics levamisole and monepantel. Moreover, SRT in anthelmintically active concentrations showed no toxicity to the ovine liver. Biotransformation of SRT in H. contortus was weak, with most of the drug remaining unmetabolized. Production of the main metabolite hydroxy-SRT did not differ significantly between strains. Other minor metabolites such as SRT-O-glucoside, dihydroxy-SRT, and SRT-ketone were also identified in H. contorts adults. Compared to H. contortus, the ovine liver metabolized SRT more extensively, mainly via desmethylation and glucuronidation. In conclusion, the potency of SRT against H. contortus was proven, and it should be tested further toward possible repurposing.


Assuntos
Anti-Helmínticos , Hemoncose , Sertralina , Doenças dos Ovinos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/toxicidade , Biotransformação , Hemoncose/tratamento farmacológico , Hemoncose/veterinária , Haemonchus/efeitos dos fármacos , Sertralina/farmacologia , Sertralina/toxicidade , Ovinos , Doenças dos Ovinos/tratamento farmacológico
6.
Bioorg Med Chem Lett ; 43: 128100, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984470

RESUMO

The search for novel and effective therapeutics for Alzheimer's disease (AD) is the main quest that remains to be resolved. The goal is to find a disease-modifying agent able to confront the multifactorial nature of the disease positively. Herewith, a family of huprineY-tryptophan heterodimers was prepared, resulting in inhibition of cholinesterase and neuronal nitric oxide synthase enzymes, with effect against amyloid-beta (Aß) and potential ability to cross the blood-brain barrier. Their cholinesterase pattern of behavior was inspected using kinetic analysis in tandem with docking studies. These heterodimers exhibited a promising pharmacological profile with strong implication in AD.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Aminoquinolinas/farmacologia , Inibidores da Colinesterase/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Fármacos Neuroprotetores/farmacologia , Triptofano/farmacologia , Doença de Alzheimer/metabolismo , Aminoquinolinas/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade , Triptofano/química
7.
Bioorg Med Chem Lett ; 51: 128374, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555506

RESUMO

Alzheimers disease (AD) is the most common neurodegenerative disorder, characterized by neuronal loss and cognitive impairment. Currently, very few drugs are available for AD treatment, and a search for new therapeutics is urgently needed. Thus, in the current study, twenty-eight new derivatives of montanine-type Amaryllidaceae alkaloids were synthesized and evaluated for their ability to inhibit human recombinant acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE). Three derivatives (1n, 1o, and 1p) with different substitution patterns demonstrated significant selective inhibitory potency for hAChE (IC50 < 5 µM), and one analog, 1v, showed selective hBuChE inhibition activity (IC50 = 1.73 ± 0.05 µM). The prediction of CNS availability, as disclosed by the BBB score, suggests that the active compounds in this survey should be able pass through the blood-brain barrier (BBB). Cytotoxicity screening and docking studies were carried out for the two most pronounced cholinesterase inhibitors, 1n and 1v.


Assuntos
Alcaloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Isoquinolinas/farmacologia , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Alcaloides/síntese química , Alcaloides/química , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Estrutura Molecular , Relação Estrutura-Atividade
8.
Arch Toxicol ; 95(3): 985-1001, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33517499

RESUMO

To date, the only treatments developed for poisoning by organophosphorus compounds, the most toxic chemical weapons of mass destruction, have exhibited limited efficacy and versatility. The available causal antidotes are based on reactivation of the enzyme acetylcholinesterase (AChE), which is rapidly and pseudo-irreversibly inhibited by these agents. In this study, we developed a novel series of monoquaternary reactivators combining permanently charged moieties tethered to position 6- of 3-hydroxypyridine-2-aldoxime reactivating subunit. Highlighted representatives (21, 24, and 27; also coded as K1371, K1374, and K1375, respectively) that contained 1-phenylisoquinolinium, 7-amino-1-phenylisoquinolinium and 4-carbamoylpyridinium moieties as peripheral anionic site ligands, respectively, showed efficacy superior or comparable to that of the clinically used standards. More importantly, these reactivators exhibited wide-spectrum efficacy and were minutely investigated via determination of their reactivation kinetics in parallel with molecular dynamics simulations to study their mechanisms of reactivation of the tabun-inhibited AChE conjugate. To further confirm the potential applicability of these candidates, a mouse in vivo assay was conducted. While K1375 had the lowest acute toxicity and the most suitable pharmacokinetic profile, the oxime K1374 with delayed elimination half-life was the most effective in ameliorating the signs of tabun toxicity. Moreover, both in vitro and in vivo, the versatility of the agents was substantially superior to that of clinically used standards. Their high efficacy and broad-spectrum capability make K1374 and K1375 promising candidates that should be further investigated for their potential as nerve agents and insecticide antidotes.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Antídotos/farmacologia , Reativadores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antídotos/síntese química , Antídotos/química , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Oximas/síntese química , Oximas/química , Oximas/farmacologia , Relação Estrutura-Atividade
9.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918638

RESUMO

Gastrointestinal side effects of donepezil, including dyspepsia, nausea, vomiting or diarrhea, occur in 20-30% of patients. The pathogenesis of these dysmotility associated disorders has not been fully clarified yet. Pharmacokinetic parameters of donepezil and its active metabolite 6-O-desmethyldonepezil were investigated in experimental pigs with and without small intestinal injury induced by dextran sodium sulfate (DSS). Morphological features of this injury were evaluated by a video capsule endoscopy. The effect of a single and repeated doses of donepezil on gastric myoelectric activity was assessed. Both DSS-induced small intestinal injury and prolonged small intestinal transit time caused higher plasma concentrations of donepezil in experimental pigs. This has an important implication for clinical practice in humans, with a need to reduce doses of the drug if an underlying gastrointestinal disease is present. Donepezil had an undesirable impact on porcine myoelectric activity. This effect was further aggravated by DSS-induced small intestinal injury. These findings can explain donepezil-associated dyspepsia in humans.


Assuntos
Donepezila/farmacocinética , Trato Gastrointestinal/patologia , Trato Gastrointestinal/fisiopatologia , Indanos/metabolismo , Metaboloma , Complexo Mioelétrico Migratório , Piperidinas/metabolismo , Estômago/fisiopatologia , Animais , Endoscopia por Cápsula , Sulfato de Dextrana , Donepezila/química , Donepezila/farmacologia , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Complexo Mioelétrico Migratório/efeitos dos fármacos , Estômago/efeitos dos fármacos , Suínos
10.
Bioorg Chem ; 103: 104179, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891860

RESUMO

YNT-185 is the first known small molecule acting as orexin 2 receptor (OX2R) agonist with implication to narcolepsy treatment, served as a template scaffold in generating a small set of seven compounds with predictive affinity to OX2R. The design of the new small molecules was driven mostly by improving physicochemical properties of the parent drug YNT-185 in parallel with in silico studies, later suggesting their favorable binding modes within the active site of OX2R. We obtained seven new potential OX2R binders that were evaluated in vitro for their CNS availability, cytotoxicity, and behavior pattern on OX2R. Out of them, 15 emerged as the most potent modulator of OX2R, which, contrary to YNT-185, displayed inverse mode of action, i.e. antagonist profile. 15 was also submitted to an in vivo experiment revealing its ability to permeate through BBB into the brain with a short half-life.


Assuntos
Compostos de Anilina/uso terapêutico , Benzamidas/uso terapêutico , Receptores de Orexina/uso terapêutico , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Compostos de Anilina/farmacologia , Benzamidas/farmacologia , Humanos , Estrutura Molecular
11.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192199

RESUMO

Human 17ß-hydroxysteroid dehydrogenase type 10 is a multifunctional protein involved in many enzymatic and structural processes within mitochondria. This enzyme was suggested to be involved in several neurological diseases, e.g., mental retardation, Parkinson's disease, or Alzheimer's disease, in which it was shown to interact with the amyloid-beta peptide. We prepared approximately 60 new compounds based on a benzothiazolyl scaffold and evaluated their inhibitory ability and mechanism of action. The most potent inhibitors contained 3-chloro and 4-hydroxy substitution on the phenyl ring moiety, a small substituent at position 6 on the benzothiazole moiety, and the two moieties were connected via a urea linker (4at, 4bb, and 4bg). These compounds exhibited IC50 values of 1-2 µM and showed an uncompetitive mechanism of action with respect to the substrate, acetoacetyl-CoA. These uncompetitive benzothiazolyl inhibitors of 17ß-hydroxysteroid dehydrogenase type 10 are promising compounds for potential drugs for neurodegenerative diseases that warrant further research and development.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/antagonistas & inibidores , Benzotiazóis/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ureia/química , Ureia/farmacologia , 3-Hidroxiacil-CoA Desidrogenases/química , Doença de Alzheimer/tratamento farmacológico , Ativação Enzimática , Humanos , Cinética , Estrutura Molecular , Proteínas Recombinantes , Relação Estrutura-Atividade
12.
Molecules ; 25(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403238

RESUMO

Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared by Menshutkin-like reaction and evaluated with respect to their biological activity, i.e., lipophilicity and critical micellar concentration. Picolinium salts with C14 and C16 side chains achieved similar or even better results when in terms of antimicrobial efficacy than benzalkoniums; notably, their fungicidal efficiency was substantially more potent. The position of the methyl substituent on the aromatic ring does not seem to affect antimicrobial activity, in contrast to the effect of length of the N-alkyl chain. Concurrently, picolinium salts exhibited satisfactory low cytotoxicity against mammalian cells, i.e., lower than that of benzalkonium compounds, which are considered as safe.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Compostos de Amônio Quaternário/química , Animais , Células CHO , Candida/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Herpesvirus Humano 3/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ácidos Picolínicos/síntese química , Compostos de Amônio Quaternário/farmacologia , Relação Estrutura-Atividade , Tensoativos/química , Tensoativos/farmacologia
13.
Molecules ; 25(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991816

RESUMO

The increasing risk of radiation exposure underlines the need for novel radioprotective agents. Hence, a series of novel 1-(2-hydroxyethyl)piperazine derivatives were designed and synthesized. Some of the compounds protected human cells against radiation-induced apoptosis and exhibited low cytotoxicity. Compared to the previous series of piperazine derivatives, compound 8 exhibited a radioprotective effect on cell survival in vitro and low toxicity in vivo. It also enhanced the survival of mice 30 days after whole-body irradiation (although this increase was not statistically significant). Taken together, our in vitro and in vivo data indicate that some of our compounds are valuable for further research as potential radioprotectors.


Assuntos
Piperazinas/química , Piperazinas/farmacologia , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Humanos , Dose Máxima Tolerável , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Piperazinas/administração & dosagem , Piperazinas/efeitos adversos , Radiação Ionizante , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/efeitos adversos , Relação Estrutura-Atividade , Análise de Sobrevida
14.
Bioorg Chem ; 82: 204-210, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30326402

RESUMO

We report the design, synthesis and biological evaluation of 17 novel 8-aryl-2-morpholino-3,4-dihydroquinazoline derivatives based on the standard model of DNA-PK and PI3K inhibitors. Novel compounds are sub-divided into two series where the second series of five derivatives was designed to have a better solubility profile over the first one. A combination of in vitro and in silico techniques suggested a plausible synergistic effect with doxorubicin of the most potent compound 14d on cell proliferation via DNA-PK and poly(ADP-ribose) polymerase-1 (PARP-1) inhibition, while alone having a negligible effect on cell proliferation.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Inibidores Enzimáticos/farmacologia , Morfolinas/farmacologia , Quinazolinonas/farmacologia , Animais , Animais não Endogâmicos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Desenho de Fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Feminino , Células HT29 , Humanos , Camundongos , Morfolinas/síntese química , Morfolinas/toxicidade , Proteínas Nucleares/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Quinazolinonas/síntese química , Quinazolinonas/toxicidade
15.
Xenobiotica ; 46(2): 132-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26153440

RESUMO

1. Giant liver fluke Fascioloides magna is a dangerous parasite, which infects herbivores. It was imported to Europe from North America and started to spread. Benzimidazoles like albendazole, mebendazole, triclabendazole and salicylanilides closantel and rafoxanide are the most used anthelmintics to control fascioloidosis. However their effect might be altered via drug-metabolizing enzymes of this parasite. 2. The aim of our study was to determine the activities of drug-metabolizing enzymes in F. magna and the metabolism of above mentioned anthelmintics. 3. Activities of several oxidative, reductive and conjugative enzymes towards various model xenobiotic substrates were found in F. magna subcellular fractions. 4. Subcellular fractions from F. magna oxidized albendazole to its sulphoxide metabolite and reduced mebendazole to hydroxyl-mebendazole. Under ex vivo conditions, only very-low concentrations of these compounds were detected using high-performance liquid chromatography/mass spectrometry. 5. The results indicate that the giant liver fluke possesses the active xenobiotic-metabolizing system. The overexpression of this system may play an important role in parasite resistance against these anthelmintics.


Assuntos
Benzimidazóis/metabolismo , Fasciola hepatica/enzimologia , Xenobióticos/metabolismo , Albendazol/metabolismo , Animais , Anti-Helmínticos/metabolismo , Cromatografia Líquida de Alta Pressão , Fasciola hepatica/efeitos dos fármacos , Mebendazol/metabolismo , Rafoxanida/metabolismo , Salicilanilidas/metabolismo , Sulfóxidos/metabolismo , Triclabendazol
16.
Parasitology ; 142(5): 648-59, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25373326

RESUMO

The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.


Assuntos
Albendazol/farmacocinética , Anti-Helmínticos/farmacocinética , Cestoides/enzimologia , Mebendazol/análogos & derivados , Mebendazol/farmacocinética , Albendazol/farmacologia , Oxirredutases do Álcool/metabolismo , Animais , Anti-Helmínticos/farmacologia , Biotransformação , Catalase/metabolismo , Cestoides/efeitos dos fármacos , Cestoides/ultraestrutura , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Intestino Delgado/parasitologia , Isoenzimas/metabolismo , Mebendazol/farmacologia , Oxigenases de Função Mista/metabolismo , Moniezíase/parasitologia , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Peroxidase/metabolismo , Ovinos , Doenças dos Ovinos/parasitologia , Superóxido Dismutase/metabolismo
17.
Chem Biol Interact ; 394: 110941, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493910

RESUMO

The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.


Assuntos
Butirilcolinesterase , Reativadores da Colinesterase , Intoxicação por Organofosfatos , Oximas , Oximas/química , Oximas/farmacologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Humanos , Intoxicação por Organofosfatos/tratamento farmacológico , Acetilcolinesterase/metabolismo , Antídotos/química , Antídotos/farmacologia , Cinética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Animais , Compostos Organofosforados/química
18.
Biomed Pharmacother ; 173: 116399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492439

RESUMO

The search for novel drugs to address the medical needs of Alzheimer's disease (AD) is an ongoing process relying on the discovery of disease-modifying agents. Given the complexity of the disease, such an aim can be pursued by developing so-called multi-target directed ligands (MTDLs) that will impact the disease pathophysiology more comprehensively. Herewith, we contemplated the therapeutic efficacy of an amiridine drug acting as a cholinesterase inhibitor by converting it into a novel class of novel MTDLs. Applying the linking approach, we have paired amiridine as a core building block with memantine/adamantylamine, trolox, and substituted benzothiazole moieties to generate novel MTDLs endowed with additional properties like N-methyl-d-aspartate (NMDA) receptor affinity, antioxidant capacity, and anti-amyloid properties, respectively. The top-ranked amiridine-based compound 5d was also inspected by in silico to reveal the butyrylcholinesterase binding differences with its close structural analogue 5b. Our study provides insight into the discovery of novel amiridine-based drugs by broadening their target-engaged profile from cholinesterase inhibitors towards MTDLs with potential implications in AD therapy.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Aminoquinolinas/uso terapêutico , Acetilcolinesterase/metabolismo , Ligantes
19.
Biomed Pharmacother ; 178: 117201, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053419

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play a significant role in developing several central nervous system (CNS) disorders. Currently, memantine, used for treating Alzheimer's disease, and ketamine, known for its anesthetic and antidepressant properties, are two clinically used NMDAR open-channel blockers. However, despite extensive research into NMDAR modulators, many have shown either harmful side effects or inadequate effectiveness. For instance, dizocilpine (MK-801) is recognized for its powerful psychomimetic effects due to its high-affinity and nearly irreversible inhibition of the GluN1/GluN2 NMDAR subtypes. Unlike ketamine, memantine and MK-801 also act through a unique, low-affinity "membrane-to-channel inhibition" (MCI). We aimed to develop an open-channel blocker based on MK-801 with distinct inhibitory characteristics from memantine and MK-801. Our novel compound, K2060, demonstrated effective voltage-dependent inhibition in the micromolar range at key NMDAR subtypes, GluN1/GluN2A and GluN1/GluN2B, even in the presence of Mg2+. K2060 showed reversible inhibitory dynamics and a partially trapping open-channel blocking mechanism with a significantly stronger MCI than memantine. Using hippocampal slices, 30 µM K2060 inhibited excitatory postsynaptic currents in CA1 hippocampal neurons by ∼51 %, outperforming 30 µM memantine (∼21 % inhibition). K2060 exhibited No Observed Adverse Effect Level (NOAEL) of 15 mg/kg upon intraperitoneal administration in mice. Administering K2060 at a 10 mg/kg dosage resulted in brain concentrations of approximately 2 µM, with peak concentrations (Tmax) achieved within 15 minutes. Finally, applying K2060 with trimedoxime and atropine in mice exposed to tabun improved treatment outcomes. These results underscore K2060's potential as a therapeutic agent for CNS disorders linked to NMDAR dysfunction.

20.
Eur J Med Chem ; 266: 116130, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218127

RESUMO

Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.


Assuntos
Doença de Alzheimer , Doença Hepática Induzida por Substâncias e Drogas , Fármacos Neuroprotetores , Piperidinas , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de N-Metil-D-Aspartato , Tacrina/química , Inibidores da Colinesterase/química , Sítios de Ligação , Colinesterases , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA