Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 15(2): 558-72, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26598647

RESUMO

Our aging population has to deal with the increasing threat of age-related diseases that impair bone healing. One promising therapeutic approach involves the coating of implants with modified glycosaminoglycans (GAGs) that mimic the native bone environment and actively facilitate skeletogenesis. In previous studies, we reported that coatings containing GAGs, such as hyaluronic acid (HA) and its synthetically sulfated derivative (sHA1) as well as the naturally low-sulfated GAG chondroitin sulfate (CS1), reduce the activity of bone-resorbing osteoclasts, but they also induce functions of the bone-forming cells, the osteoblasts. However, it remained open whether GAGs influence the osteoblasts alone or whether they also directly affect the formation, composition, activity, and distribution of osteoblast-released matrix vesicles (MV), which are supposed to be the active machinery for bone formation. Here, we studied the molecular effects of sHA1, HA, and CS1 on MV activity and on the distribution of marker proteins. Furthermore, we used comparative proteomic methods to study the relative protein compositions of isolated MVs and MV-releasing osteoblasts. The MV proteome is much more strongly regulated by GAGs than the cellular proteome. GAGs, especially sHA1, were found to severely impact vesicle-extracellular matrix interaction and matrix vesicle activity, leading to stronger extracellular matrix formation and mineralization. This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms.


Assuntos
Envelhecimento/patologia , Reabsorção Óssea/genética , Osteoblastos/metabolismo , Osteogênese , Proteômica/métodos , Adulto , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Reabsorção Óssea/patologia , Técnicas de Cultura de Células , Sulfatos de Condroitina/administração & dosagem , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/administração & dosagem , Humanos , Ácido Hialurônico/administração & dosagem , Masculino , Osteoclastos/metabolismo , Proteínas/genética , Proteínas/metabolismo
2.
J Cell Biochem ; 115(9): 1561-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24706396

RESUMO

Bone healing has been described to be most efficient if the early inflammatory phase is resolved timely. When the inflammation elevates or is permanently established, bone healing becomes impaired and, moreover, bone destruction often takes place. Systemic disorders such as diabetes and bone diseases like arthritis and osteoporosis are associated with sustained inflammation and delayed bone healing. One goal of biomaterial research is the development of materials/surface modifications which support the healing process by inhibiting the inflammatory bone erosion and suppressing pro-inflammatory mediators and by that promoting the bone repair process. In the present study, the influence of artificial extracellular matrices (aECM) on the interleukin (IL)-1ß-induced pro-inflammatory response of human mesenchymal stromal cells (hMSC) was studied. hMSC cultured on aECM composed of collagen I and high-sulfated glycosaminoglycan (GAG) derivatives did not secrete IL-6, IL-8, monocyte chemoattractant protein-1, and prostaglandin E2 in response to IL-1ß. The activation and nuclear translocation of nuclear factor κBp65 induced by IL-1ß, tumor necrosis factor-α or lipopolysaccharide was abrogated. Furthermore, these aECM promoted the osteogenic differentiation of hMSC as determined by an increased activity of tissue non-specific alkaline phosphatase (TNAP); however, the aECM had no effect on the IL-1ß-induced TNAP activity. These data suggest that aECM with high-sulfated GAG derivatives suppress the formation of pro-inflammatory mediators and simultaneously promote the osteogenic differentiation of hMSC. Therefore, these aECM might offer an interesting approach as material/surface modification supporting the bone healing process.


Assuntos
Anti-Inflamatórios/farmacologia , Colágeno Tipo I/farmacologia , Glicosaminoglicanos/farmacologia , Células-Tronco Mesenquimais/imunologia , Sulfatos/farmacologia , Adulto , Anti-Inflamatórios/química , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/química , Matriz Extracelular/imunologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/química , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
3.
Stem Cells Int ; 2016: 7842191, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293446

RESUMO

Adult human bone marrow stromal cells (hBMSC) are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the "aspect plastic adherence" without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a) how many passages the osteogenic characteristics are stable in and (b) the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP), octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ). The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25512021

RESUMO

The synthetic glucocorticoid dexamethasone (dex) is a mandatory additive to induce osteogenic differentiation of bone marrow stromal cell (BMSC) in vitro; however it is also known to promote the pathogenesis of osteoporotic bone disease in vivo. In this study human (h)BMSC were cultured in osteogenic medium containing ß-glycerophosphate and ascorbate (OM) and in OM containing dex (OM/D). It was seen that dex induced in human (h)BMSC both, osteogenic and adipogenic differentiation markers. Dex reveals its anti-inflammatory effect by reducing endogenous prostaglandin E2 (PGE2) formation and by suppressing the inducible enzymes cyclooxygenase 2 and microsomal PGE2 synthase 1. It was further seen that dex enhanced the expression of prostaglandin receptors, mainly EP2 and EP4 receptor subtypes. We thus hypothesized that dex enforces the susceptibility of hBMSC to respond to exogenous PGE2. Permanent exposure of hBMSC which were cultured in OM/D to PGE2, decreased osteogenic and increased adipogenic differentiation markers. The effects of PGE2 were preferentially mediated by receptor subtypes EP2 and EP4; EP1 was partially involved in pro-adipogenic effects, and EP3 was partially involved in anti-osteogenic effects. These results suggest that dex suppresses the formation of endogenous PGE2 but also enables hBMSC to respond to PGE2 due to the induction of PGE2 receptors EP2 and EP4. PGE2 then shifts in hBMSC the balance from osteogenic to adipogenic differentiation.


Assuntos
Adipogenia/efeitos dos fármacos , Dexametasona/farmacologia , Dinoprostona/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Adulto , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo
5.
Biomed Res Int ; 2014: 938368, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24864267

RESUMO

Sulfated glycosaminoglycans (GAG) are components of the bone marrow stem cell niche and to a minor extent of mature bone tissue with important functions in regulating stem cell lineage commitment and differentiation. We anticipated that artificial extracellular matrices (aECM) composed of collagen I and synthetically oversulfated GAG derivatives affect preferentially the differentiation of osteoblast-precursor cells and early osteoblasts. A set of gradually sulfated chondroitin sulfate and hyaluronan derivatives was used for the preparation of aECM. All these matrices were analysed with human bone marrow stromal cells to identify the most potent aECM and to determine the influence of the degree and position of sulfate groups and the kind of disaccharide units on the osteogenic differentiation. Oversulfated GAG derivatives with a sulfate group at the C-6 position of the N-acetylglycosamine revealed the most pronounced proosteogenic effect as determined by tissue nonspecific alkaline phosphatase activity and calcium deposition. A subset of the aECM was further analysed with different primary osteoblasts and cell lines reflecting different maturation stages to test whether the effect of sulfated GAG derivatives depends on the maturation status of the cells. It was shown that the proosteogenic effect of aECM was most prominent in early osteoblasts.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/farmacologia , Osteoblastos/citologia , Células-Tronco/citologia , Adulto , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Bovinos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Feminino , Glicosaminoglicanos/química , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ratos Wistar , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA