Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 684, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470795

RESUMO

BACKGROUND: We report the sequencing, assembly and analysis of the genome of the Komodo dragon (Varanus komodoensis), the largest extant lizard, with a focus on antimicrobial host-defense peptides. The Komodo dragon diet includes carrion, and a complex milieu of bacteria, including potentially pathogenic strains, has been detected in the saliva of wild dragons. They appear to be unaffected, suggesting that dragons have robust defenses against infection. While little information is available regarding the molecular biology of reptile immunity, it is believed that innate immunity, which employs antimicrobial host-defense peptides including defensins and cathelicidins, plays a more prominent role in reptile immunity than it does in mammals. . RESULTS: High molecular weight genomic DNA was extracted from Komodo dragon blood cells. Subsequent sequencing and assembly of the genome from the collected DNA yielded a genome size of 1.6 Gb with 45x coverage, and the identification of 17,213 predicted genes. Through further analyses of the genome, we identified genes and gene-clusters corresponding to antimicrobial host-defense peptide genes. Multiple ß-defensin-related gene clusters were identified, as well as a cluster of potential Komodo dragon ovodefensin genes located in close proximity to a cluster of Komodo dragon ß-defensin genes. In addition to these defensins, multiple cathelicidin-like genes were also identified in the genome. Overall, 66 ß-defensin genes, six ovodefensin genes and three cathelicidin genes were identified in the Komodo dragon genome. CONCLUSIONS: Genes with important roles in host-defense and innate immunity were identified in this newly sequenced Komodo dragon genome, suggesting that these organisms have a robust innate immune system. Specifically, multiple Komodo antimicrobial peptide genes were identified. Importantly, many of the antimicrobial peptide genes were found in gene clusters. We found that these innate immunity genes are conserved among reptiles, and the organization is similar to that seen in other avian and reptilian species. Having the genome of this important squamate will allow researchers to learn more about reptilian gene families and will be a valuable resource for researchers studying the evolution and biology of the endangered Komodo dragon.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Imunidade Inata/genética , Lagartos/genética , beta-Defensinas/genética , Animais , Peptídeos Catiônicos Antimicrobianos/sangue , Peptídeos Catiônicos Antimicrobianos/química , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Lagartos/sangue , Lagartos/imunologia , Família Multigênica , beta-Defensinas/sangue , beta-Defensinas/química , Catelicidinas
2.
Bioinformatics ; 22(5): 641-2, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16397006

RESUMO

SUMMARY: BuchneraBASE is a bioinformatic research tool for the genome of the symbiotic bacterium Buchnera sp. APS that includes an improved genome annotation, comparative information about related insect symbiont genomes and a complete mapping of metabolic reactions to an Escherichia coli in silico model. The database is designed to accommodate genome-wide post-genomic datasets that are becoming available for this organism. AVAILABILITY: BuchneraBASE is available at http://www.buchnera.org/.


Assuntos
Buchnera/genética , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genoma Bacteriano/genética , Genômica/métodos , Armazenamento e Recuperação da Informação/métodos , Internet , Sistemas On-Line
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA