Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1841(1): 180-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24201377

RESUMO

Discoidal high-density lipoproteins (D-HDL) are critical intermediates in reverse cholesterol transport. Most of the present knowledge of D-HDL is based on studies with reconstituted lipoprotein complexes of apolipoprotein A-I (apoA-I) obtained by cholate dialysis (CD). D-HDL can also be generated by the direct microsolubilization (DM) of phospholipid vesicles at the gel/fluid phase transition temperature, a process mechanistically similar to the "in vivo" apoAI lipidation via ABCA1. We compared the apoA-I configuration in D-HDL reconstituted with dimyristoylphosphatidylcholine by both procedures using fluorescence resonance energy transfer measurements with apoA-I tryptophan mutants and fluorescently labeled cysteine mutants. Results indicate that apoA-I configuration in D-HDL depends on the reconstitution process and are consistent with a "double belt" molecular arrangement with different helix registry. As reported by others, a configuration with juxtaposition of helices 5 of each apoAI monomer (5/5 registry) predominates in D-HDL obtained by CD. However, a configuration with helix 5 of one monomer juxtaposed with helix 2 of the other (5/2 registry) would predominate in D-HDL generated by DM. Moreover, we also show that the kinetics of cholesterol efflux from macrophage cultures depends on the reconstitution process, suggesting that apoAI configuration is important for this HDL function.


Assuntos
Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Substituição de Aminoácidos , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Linhagem Celular , Colesterol/química , Colesterol/genética , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
2.
Dent Mater ; 36(12): 1495-1507, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32988646

RESUMO

OBJECTIVE: To develop an antimicrobial and anti-adherent thymol (TOH)-containing coating on titanium (Ti) by a bioinspired one-step biocompatible method. METHODS: A nanolayer of adsorbed TOH (TOH-NL-Ti) was formed by an easy deep coating method on Ti surface. The treatment consists in a simple one-step immersion process in a TOH-containing solution. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), potentiodynamic electrochemical technique, open circuit potential records, Atomic Force Microscopy (AFM) and measurements of TOH release were used to characterize TOH-NL-Ti. Live/Dead staining and plate counting were employed to quantify attached and living adhered bacteria, respectively. Biocompatibility and cytotoxicity in fibroblastic and pre-osteoblastic cell lines were evaluated by acridine orange staining and MTT assay, respectively. RESULTS: TOH adsorbed on TOH-NL-Ti was detected by ATR-FTIR and electrochemical techniques. ATR-FTIR results showed that TOH nanofilms development involves spontaneous production of ketonic structures on Ti surface. AFM analysis revealed that the thickness of the TOH-NL was below 80 nm. Finally, microbiological assays confirmed that TOH-NL-Ti can inhibit the adhesion and kill attached bacteria leading to the eradication of leaving cells on its surface. After 24 h of biocidal release, the antimicrobial effect is also significant (a decrease of 3 orders in the number of attached bacteria). SIGNIFICANCE: The formation of TOH-NL-Ti nanolayer is a simple strategy able to be applied by not specially trained personnel, to reduce implant infection risks, ensure highly effective antimicrobial action and inhibition of bacterial adhesion on Ti surfaces without showing toxic effects for pre-osteoblastic and fibroblastic cells.


Assuntos
Implantes Dentários , Titânio , Materiais Revestidos Biocompatíveis , Imersão , Propriedades de Superfície , Timol/farmacologia
3.
Front Immunol ; 10: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761127

RESUMO

Celiac disease (CD) is a chronic enteropathy elicited by a Th1 response to gluten peptides in the small intestine of genetically susceptible individuals. However, it remains unclear what drives the induction of inflammatory responses of this kind against harmless antigens in food. In a recent work, we have shown that the p31-43 peptide (p31-43) from α-gliadin can induce an innate immune response in the intestine and that this may initiate pathological adaptive immunity. The receptors and mechanisms responsible for the induction of innate immunity by p31-43 are unknown and here we present evidence that this may reflect conformational changes in the peptide that allow it to activate the NLRP3 inflammasome. Administration of p31-43, but not scrambled or inverted peptides, to normal mice induced enteropathy in the proximal small intestine, associated with increased production of type I interferon and mature IL-1ß. P31-43 showed a sequence-specific spontaneous ability to form structured oligomers and aggregates in vitro and induced activation of the ASC speck complex. In parallel, the enteropathy induced by p31-43 in vivo did not occur in the absence of NLRP3 or caspase 1 and was inhibited by administration of the caspase 1 inhibitor Ac-YVAD-cmk. Collectively, these findings show that p31-43 gliadin has an intrinsic propensity to form oligomers which trigger the NLRP3 inflammasome and that this pathway is required for intestinal inflammation and pathology when p31-43 is administered orally to mice. This innate activation of the inflammasome may have important implications in the initial stages of CD pathogenesis.


Assuntos
Caspase 1/metabolismo , Gliadina/metabolismo , Inflamassomos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Sequência de Aminoácidos , Animais , Apoptose , Doença Celíaca/etiologia , Doença Celíaca/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Gliadina/química , Gliadina/ultraestrutura , Mucosa Intestinal/ultraestrutura , Intestino Delgado , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Conformação Proteica , Relação Estrutura-Atividade
4.
Protein J ; 31(8): 681-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22986928

RESUMO

Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins. This protein has key functions in lipoprotein metabolism and its plasma concentration is inversely correlated with the incidence of atherosclerosis and cardiovascular diseases. There is an increasing need to develop methods for efficient production of recombinant apoA-I for using it in basic research or pharmacological therapy. An apoA-I variant lacking two amino acid residues at the N-terminus can be easily produced by bacterial expression. We report here the characterization of this variant comparing its properties with those of the protein isolated from human serum. The results validate the use of this variant in future assays and investigations.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Apolipoproteína A-I/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Guanidina , Humanos , Desnaturação Proteica , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Reprodutibilidade dos Testes , Termodinâmica
5.
Arch Biochem Biophys ; 428(2): 188-97, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15246876

RESUMO

Previous results [J. Biol. Chem. 276 (2001) 16978] indicated that an apolipoprotein A-I (apoAI) central region swings away from lipid contact in discoidal high density lipoproteins (HDL), but it is able to penetrate into the bilayer of lipid vesicles. In this work, we have studied the interaction with lipid membranes of a synthetic peptide with the sequence of apoAI region between residues 77 and 120 (AI 77-120). Like apoAI, AI 77-120 binds to phospholipid vesicles and shows selectivity for cholesterol-containing membranes. Moreover, AI 77-120 promotes cholesterol desorption from membranes in a similar fashion as apoAI and can stimulate cholesterol efflux from Chinese hamster ovary cells. AI 77-120 has a considerable alpha-helical content in water solution, and its secondary structure is not largely modified after binding to membranes. Both apoA-I and AI 77-120 are oligomeric in the lipid-bound state, suggesting that dimerization of the central domain could be required for the membrane binding activity of apoA-I in HDL.


Assuntos
Apolipoproteína A-I/química , Peptídeos/química , Animais , Células CHO , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Dicroísmo Circular , Cricetinae , Relação Dose-Resposta a Droga , Humanos , Luz , Metabolismo dos Lipídeos , Lipídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA